PCR Arrays

An Advanced qPCR Technology to Enhance Your Analysis of Pathways

RT² Profiler PCR Arrays

Microarray Profiling Capabilities with Real-Time PCR Performance

George J. Quellhorst, Jr., Ph.D. Product Manager, Gene Expression Analysis

Topics to be Covered

- Introduction to the PCR Array
 - What <u>IS</u> the PCR Array?
 - PCR Array System Brief Protocol Overview
- Biologically Relevant PCR Array Performance
 - Sensitivity, Specificity, Reproducibility, & Reliability
- Applications for the PCR Array
 - Immunology Application Example:
 - Monitor the Induction of Cytokines
 - Cancer Application Example:
 - Explore the oncogenic route taken by two breast cancer tumors
 - Toxicology Application Example:
 - Distinguish liver toxicity of structurally similar drug candidates

Topics to be Covered

Introduction to the PCR Array

- What <u>IS</u> the PCR Array?
- PCR Array System Brief Protocol Overview
- Biologically Relevant PCR Array Performance
 - Sensitivity, Specificity, Reproducibility, & Reliability
- Applications for the PCR Array
 - Immunology Application Example:
 - Monitor the Induction of Cytokines
 - Cancer Application Example:
 - Explore the oncogenic route taken by two breast cancer tumors
 - Toxicology Application Example:
 - Distinguish liver toxicity of structurally similar drug candidates

What is the RT² Profiler PCR Array?

- Expression analysis tool for a focused panel of genes
 - Pre-designed cataloged arrays for over 100 pathways
 - Customized panels ranging from 4 to 384 genes
 - Compatible with (*almost*) all real-time PCR instruments
- 96- or 384-well plate of SYBR Green-optimized qPCR assays
 - 84 relevant, pathway- or disease-focused genes
 - 5 housekeeping genes and three RNA quality controls
- Very simple two-hour protocol that generates:
 - Microarray-like multi-gene content & results
 - qPCR sensitivity and reproducibility

RT²*Profiler*[™] **PCR** Array Layout

_	1	2	3	4	5	6	7	8	9	10	11	12
⊳	G01	G02	G3	G04	G05	G06	G07	G08	G09	G10	G11	G12
Β	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24
ဂ	G25	G26	G27	G28	G29	G30	G31	G32	G33	G34	G35	G36
	G37	G38	G39	G40	G41	G42	G43	G44	G45	G46	G47	G48
ш	G49	G50	G51	G52	G53	G54	G55	G56	G57	G58	G59	G60
т	G61	G62	G63	G64	G65	G66	G67	G68	G69	G70	G71	G72
G	G73	G74	G75	G76	G77	G78	G79	G80	G81	G82	G83	G84
Т	HK1	HK2	HK3	HK4	HK5	GDC	RTC	RTC	RTC	PPC	PPC	PPC

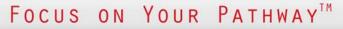
- Wells A1-G12 (G01-G84):
- Wells H1-H5 (HK1-HK5):
- Wells H6 (GDC):
- Well H7-H9 (RTC):
- Well H10-H12 (PPC):

84 Pathway-Focused Genes 5 Housekeeping Genes Genomic DNA Control Reverse Transcription Control Positive PCR Control

Pathway Design Requirements

- NOT biochemical pathways or kinase cascades
 Biological Processes, Disease States
- NOT simply every gene list from the entire pathway

 Use genes regulated at mRNA level
- Publicly Accessible Databases
- Text Mining Relevant Literature
- Reviews by Experts in the Field
- Feedback from Previous & Existing Customers



Available Cataloged PCR Arrays

Human, Mouse, and Rat

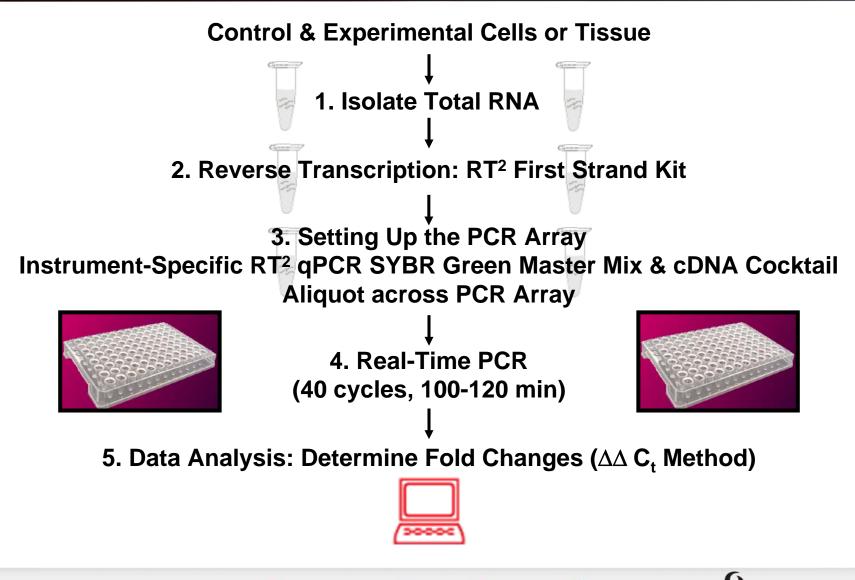
PATHWAY	SPECIES	PATHWAY	SPECIES
Angiogenic Growth Factors & Angiogenesis Inhibitors	HM	Interferons & Receptors	HM
Angiogenesis	HMR	JAK / STAT Signaling	HM
Apoptosis	HMR	MAP Kinase Signaling	HMR
Atherosclerosis	HM	Neuroscience Ion Channels & Transporters	HM
Breast Cancer and Estrogen Receptor Signaling	HMR	Neurotransmitter Receptors & Regulators	HMR
cAMP / Calcium Signaling PathwayFinder	HM	Neurotrophins & Receptors	HMR
Cancer Drug Resistance & Metabolism	HM	NFĸB Signaling	HMR
Cancer PathwayFinder™	HMR	Nitric Oxide Signaling	HM
Cell Cycle	HMR	Notch Signaling	HM
Chemokines & Receptors	HMR	Obesity	MR
Common Cytokines	HMR	Osteogenesis	HM
Diabetes	HMR	Oxidative Stress & Antioxidant Defense	HM
DNA Damage Signaling	HM	p53 Signaling	HM
Drug Metabolism	HMR	Signal Transduction PathwayFinder™	HMR
Drug Metabolism: Phase I Enzymes	Н	Stem Cells	HM
Drug Transporters	Н	Stress & Toxicity PathwayFinder™	HMR
Endothelial Cell Biology	HMR	TGFβ / BMP Signaling	HMR
Extracellular Matrix and Adhesion Molecules	HMR	Th1 Th2 Th3	HMR
Growth Factors	HM	TH17 for Autoimmunity & Inflammation	M
Housekeeping Genes	HMR	TNF Ligands and Receptors	HM
Hypoxia Signaling	HM	Toll-Like Receptor Signaling	HMR
Inflammatory Cytokines & Receptors	HMR	Tumor Metastasis	НМ
Insulin Signaling	HMR	WNT Signaling	HMR

Other Pathways? Other Species?

Human RT² miRNA qPCR Arrays & Assays

ALSO NOW AVAILABLE

- Individual Assays for over 420 miRNA Sequences
- Used to Design Pathway-Focused PCR Arrays
 - Cancer
 - Cell Differentiation & Development
 - Genome
 - miFinder™
- Similar System, Packaging, Pricing, and Procedure as RT² Profiler PCR Arrays
- Same rigorous assay design & experimental validation


4 Components of the PCR Array System

• RT² First Strand Kit

- Built-in genomic DNA elimination & external RNA control
- RT² SYBR Green qPCR Master Mixes
 - Instrument-specific reference dyes included
- RT² Profiler[™] PCR Array
 - Instrument-specific plate formats
- FREE Data Analysis Web Portal or Excel Template
 - Automatic results from uploaded raw C_t data

Ease-of-Use: How the PCR Array Works

SuperArray

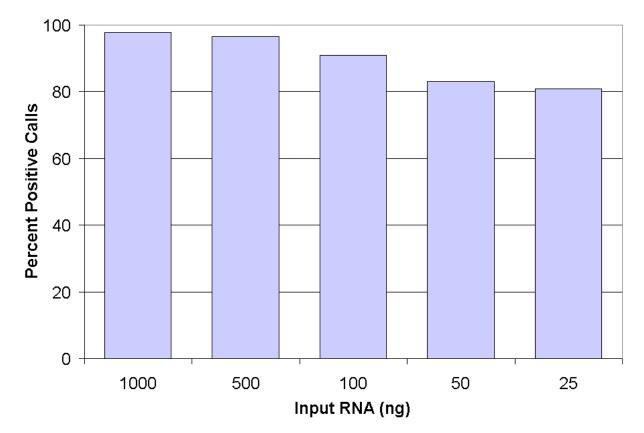
Compatible Instrumentation

- Matched with the instrument in your lab
- Applied Biosystems (ABI)
 - Standard 96-Well Blocks: 7000, 7300, <u>**7500**</u>, 7700
 - FAST 96-Well Blocks: 7500, 7900HT
 - FAST 384-Well Block: 7900HT
- Bio-Rad
 - <u>iCycler</u>, MyiQ, iQ5
 - MJ Research: Opticon, Opticon 2, Chromo 4
- Stratagene
 - Mx3000p, <u>Mx3005p</u>, <u>Mx4000p</u>
- Roche

LightCycler 480

Eppendorf masterplex ep

<u>Underlined</u> Instruments run PCR Arrays 24/7/365 in SuperArray R&D and Production Departments


Topics to be Covered

- Introduction to the PCR Array
 - What <u>IS</u> the PCR Array?
 - PCR Array System Brief Protocol Overview
- Biologically Relevant PCR Array Performance
 - Sensitivity, Specificity, Reproducibility, & Reliability
- Applications for the PCR Array
 - Immunology Application Example:
 - Monitor the Induction of Cytokines
 - Cancer Application Example:
 - Explore the oncogenic route taken by two breast cancer tumors
 - Toxicology Application Example:
 - Distinguish liver toxicity of structurally similar drug candidates

Performance: SensitivitY

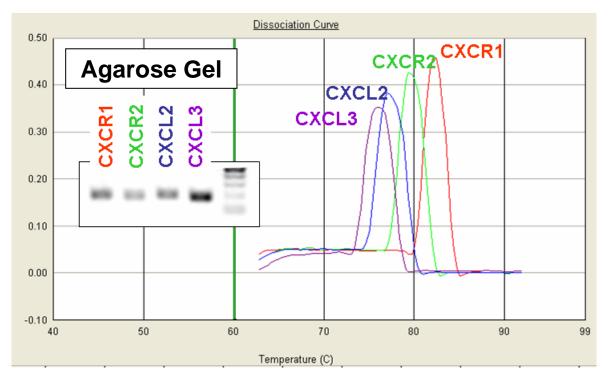
See More Genes with Less RNA


CONCLUSION: See gene expression as rare as <u>UN</u>-induced cytokines.

Human Inflammatory Cytokines & Receptors in Universal Reference RNA

Performance: Specificity

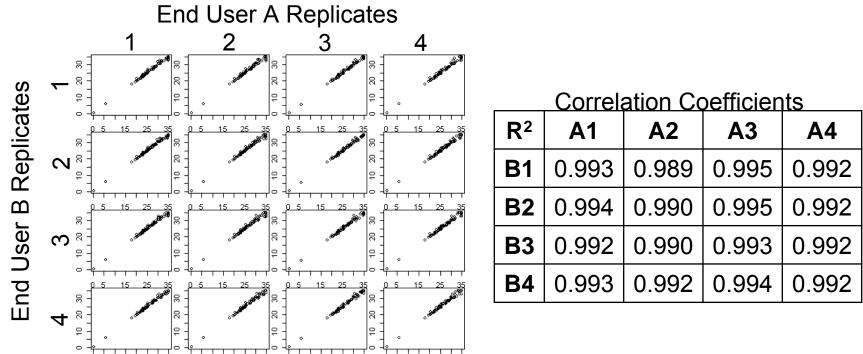
Dissociation Curves


CONCLUSION: Each well detects a single gene-specific product.

Human TGFβ & BMP Signaling Pathway in Universal Reference RNA

Specificity: Single Gene-Specific Product

Dissociation Curves


CONCLUSION: PCR Array specifically detects the expression of individual genes despite the presence of members of the same gene family in the same RNA sample.

Human Chemokines & Receptors in Universal Reference RNA

Reproducibility: Same C_t Values

Different Lots, End-Users, Times


CONCLUSION:

The PCR Arrays are <u>SO</u> reproducible that the same raw threshold cycle data can be obtained for the same samples even from different end users at different times. Human Drug Metabolism in Universal Reference RNA

Reproducibility: Same Fold-Change Results

Different Instruments

R ²	7500 FAST	Mx3000p	iCycler
7500 FAST	1		
Mx3000p	0.980	1	
iCycler	0.981	0.973	1

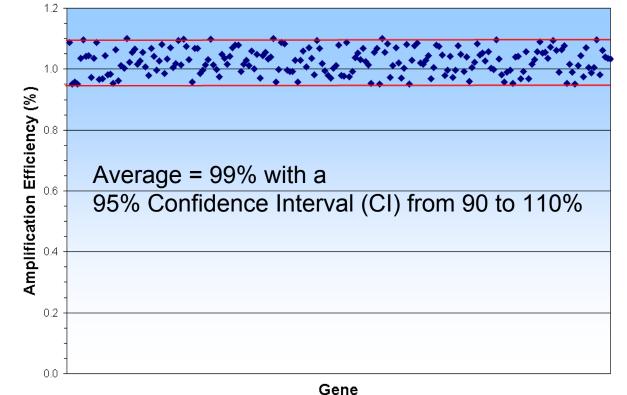
CONCLUSION:

The PCR Arrays are <u>SO</u> reproducible that the same fold-change results can be obtained for the same samples even from different instruments.

CONCLUSION: PCR Arrays demonstrate a highly reproducible results.

Be confident that observed gene expression changes due to biology.

Human Drug Metabolism in MAQC Standard RNA Samples A & B

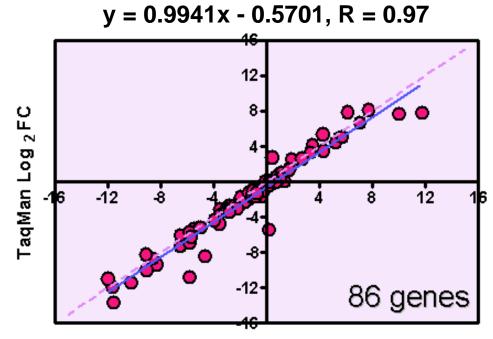

Performance: Reproducibility

- Can I compare results between plates and samples? **YES!**
- Will future lab members get the same results as I did? YES!
 - Correlation factor (R) = 0.989 0.995
 For raw C_t value data between different lots, end-users, and times
- Will another lab be able to reproduce my results? YES!
 - Correlation factor (R) = 0.973 0.981
 For fold-change results across instrument platforms
- CONCLUSION: Be confident that gene expression changes are due to <u>biology</u> and <u>not</u> the technology itself
- Biological Triplicates Recommended

Performance: Reliability

Consistently High Amplification Efficiencies

Representative set of 500 out of > 4,000 assays used in PCR Arrays


CONCLUSION: Get accurate and reliable $\Delta\Delta C_t$ results.

FOCUS ON YOUR PATHWAYTM

Performance: Accuracy & Reliability

Same Fold-Change Results as TaqMan®

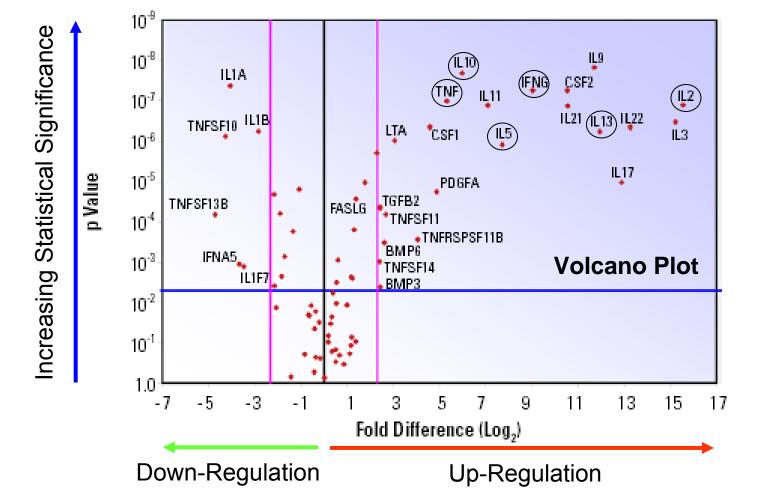
RT² PCR Log₂ FC

CONCLUSION: Pathway-focused PCR Arrays give the same reliable answers as individual TaqMan Gene Expression Assays. **Profile pathways all at once rather than one gene at a time.**

Human Custom PCR Array in MAQC Standard RNA Samples A & B

Topics to be Covered

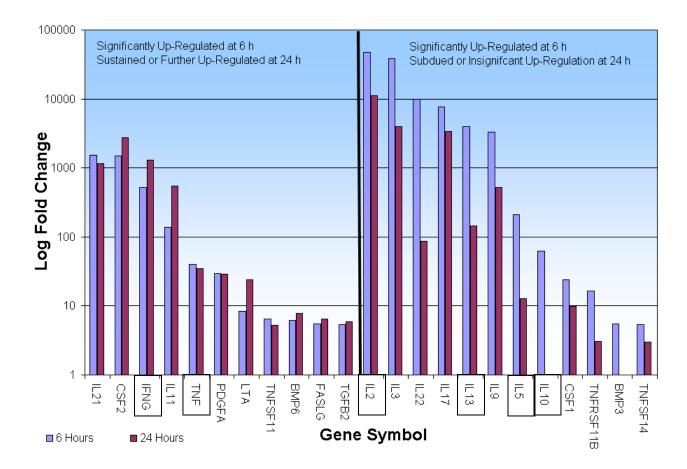
- Introduction to the PCR Array
 - What <u>IS</u> the PCR Array?
 - PCR Array System Brief Protocol Overview
- Biologically Relevant PCR Array Performance
 - Sensitivity, Specificity, Reproducibility, & Reliability
- Application of the PCR Array
 - Immunology Application Example:
 - Monitor the Induction of Cytokines
 - Cancer Application Example:
 - Explore the oncogenic route taken by two breast cancer tumors
 - Toxicology Application Example:
 - Ascertain Liver Toxicity of Similar Drug Candidates



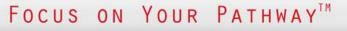
Immunology Research Application Example

- Quantification of cytokine expression levels is important for the study of inflammatory and immune responses.
- Correlating changes in secreted protein levels with changes in mRNA levels helps delineate the mechanisms regulating cytokine production.
- Stimulate human peripheral blood mononuclear cells (PBMC) with 50 ng/ml PMA plus 1 μg/ml ionomycin over a time course (0, 6, 12, 24 h).
- Monitor the gene expression levels of 84 different cytokines in technical triplicates using the Human Common Cytokines PCR Array. Validate results with ELISA.

PBMC Cytokine Induction by PMA-Ionomycin

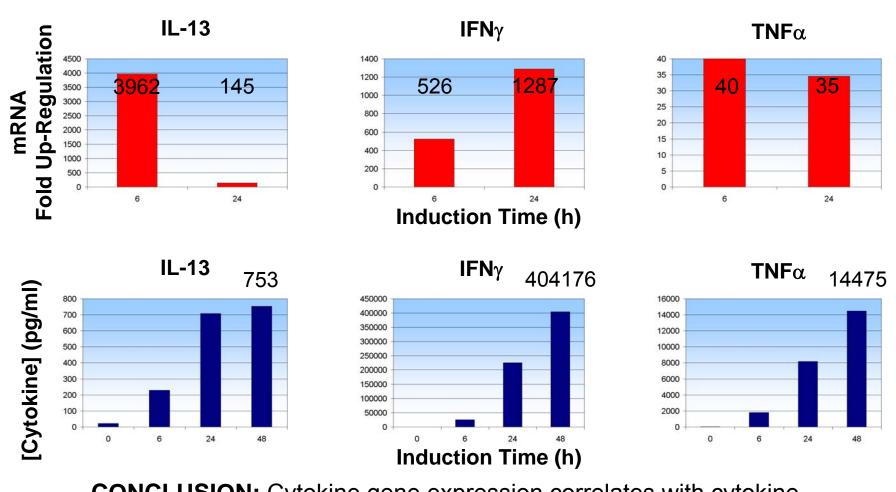

23 Genes Up- & 6 Genes Down-Regulated by > 5-fold (p < 0.0005) with 6-h stimulation

Focus on Your Pathwaytm


SuperArray

23

Cytokine Induction in PBMC by PMA-Ionomycin



After 24-h stimulation, one half of the up-regulated genes maintains or increases, while the other half decreases their levels of expression.

Cytokine Secretion & mRNA Expression Correlate

CONCLUSION: Cytokine gene expression correlates with cytokine protein secretion in a complicated time-dependent fashion.

Immunology Application Example

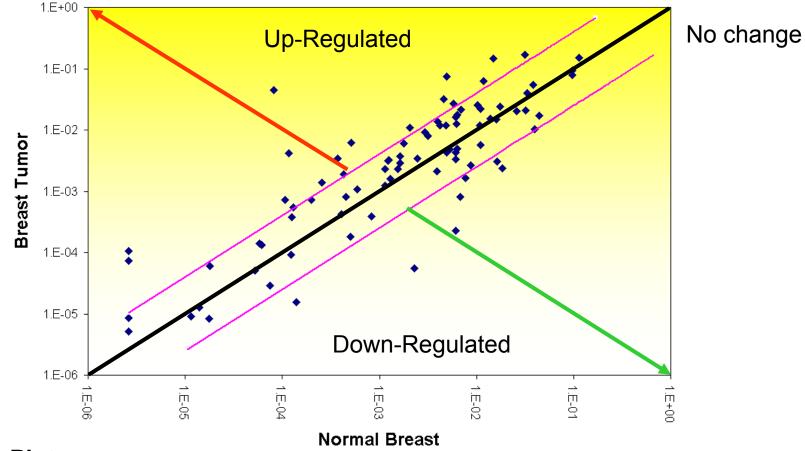
Conclusions

- PCR Arrays have the sensitivity and dynamic range to detect both stimulated and un-stimulated cytokines at the same time.
- Induction in cytokine secretion by PMA-ionomycin was sustained up to 48 hours of stimulation, despite subdued mRNA expression levels for IL-13 and TNF-α (and others) after 24 hours of stimulation.
- Cytokine gene expression correlates with cytokine protein secretion in a complicated time-dependent fashion.
- Profiling cytokine gene expression levels examines more cytokines than ELISA does and can help you probe more deeply into the mechanism of regulating cytokine secretion.

Topics to be Covered

- Introduction to the PCR Array
 - What <u>IS</u> the PCR Array?
 - PCR Array System Brief Protocol Overview
- Biologically Relevant PCR Array Performance
 - Sensitivity, Specificity, Reproducibility, & Reliability
- Application of the PCR Array
 - Immunology Application Example:
 - Monitor the Induction of Cytokines
 - Cancer Application Example:
 - Explore the oncogenic route taken by two breast cancer tumors
 - Toxicology Application Example:
 - Ascertain Liver Toxicity of Similar Drug Candidates

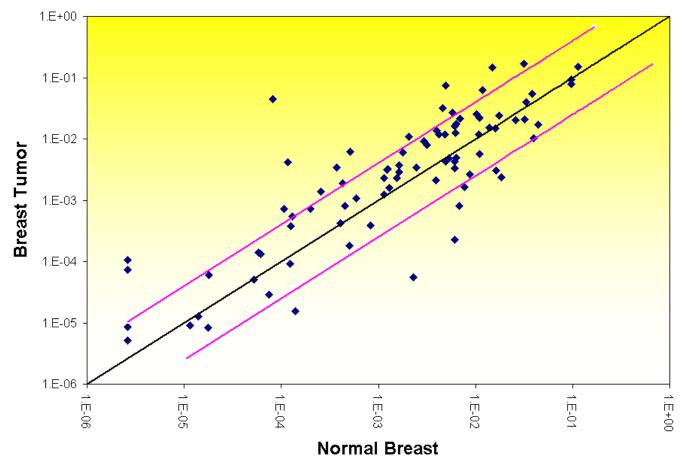
- Ascertain the oncogenic route taken by human breast tumors
- Characterize total RNA from normal human breast and two human breast tumors.
- Compare expression of 84 cancer-related genes
 - Human Cancer PathwayFinder™ PCR Array
 - Human Extracellular Matrix & Adhesion Molecule PCR Array

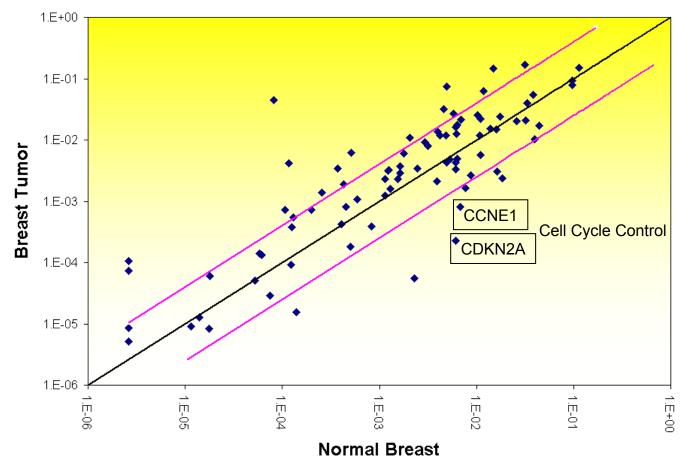


Cancer PathwayFinder™ PCR Array

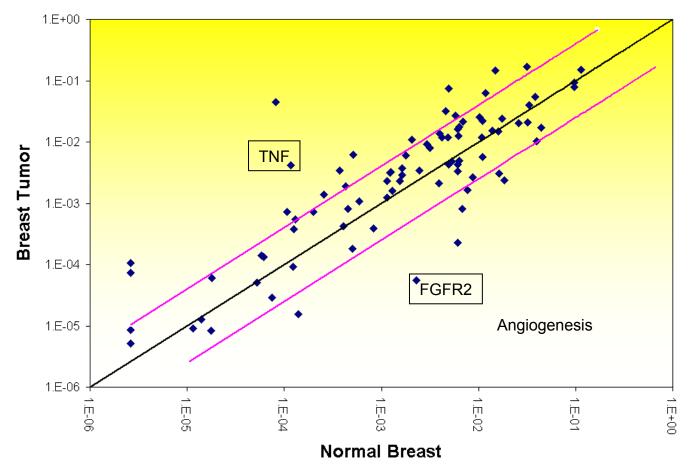
Functional Gene Groupings

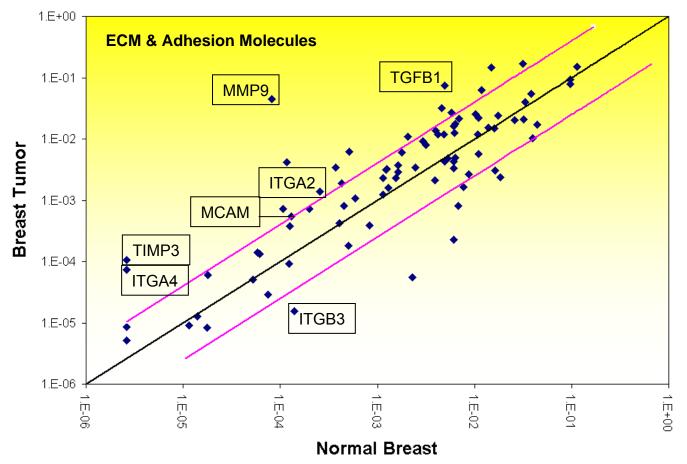
- Adhesion
- Angiogenesis
- Apoptosis
- Cell Cycle Control
- Cell Senescence
- DNA Damage Repair
- Invasion
- Metastasis
- Signal Transduction Molecules
- Transcription Factors

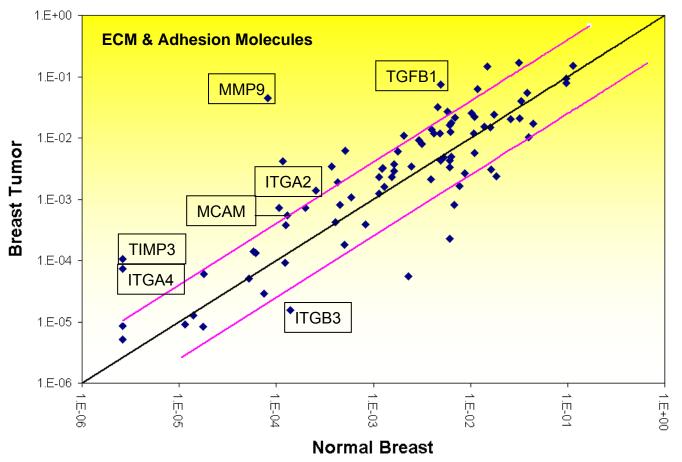



Scatter Plot

Normalized tumor gene expression levels (log₁₀) versus normal tissue



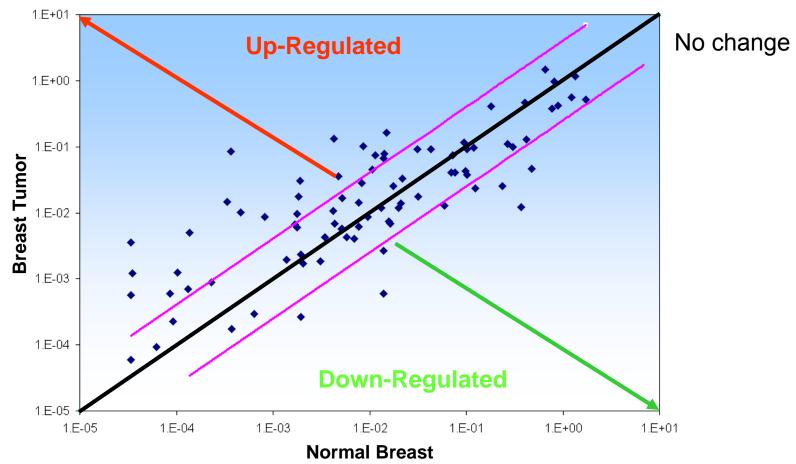

• 24 genes with significant change; 17 up- and 7 down-regulated in tumor


• 24 genes with significant change; 17 up- and 7 down-regulated in tumor

• 24 genes with significant change; 17 up- and 7 down-regulated in tumor

• 24 genes with significant change; 17 up- and 7 down-regulated in tumor

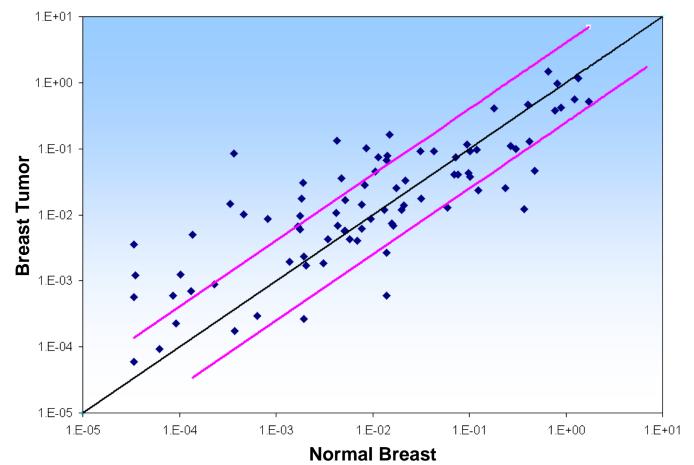
- 24 genes with significant change; 17 up- and 7 down-regulated in tumor
- **CONCLUSION:** Follow Up with ECM & Adhesion Molecule PCR Array



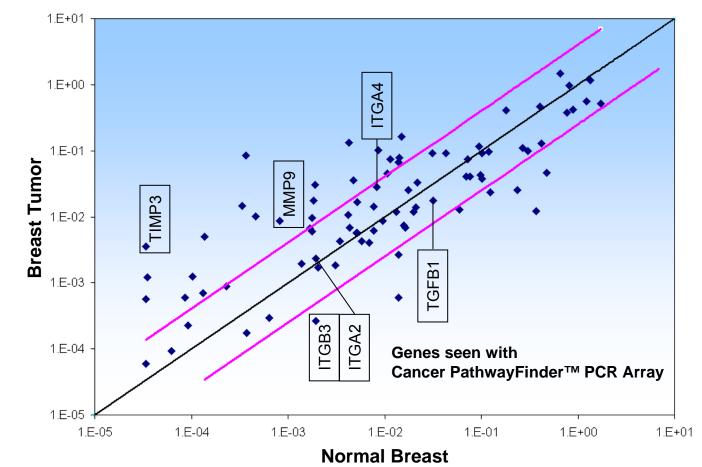
ECM & Adhesion Molecules PCR Array

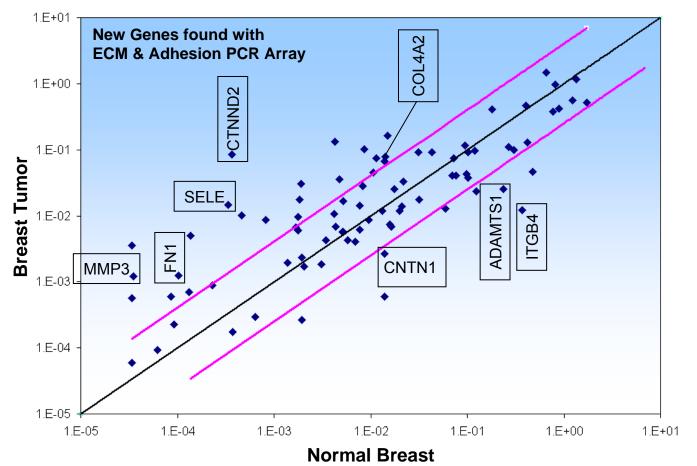
Functional Gene Groupings

- Cadherins
- Catenins
- Cell Adhesion Molecules (ICAM, VCAM)
- Collagens
- Integrins
- Laminins
- Matrix & ADAM Metallopeptidases (MMP, ADAMTS)
- Selectins (SELE, SELL, SELP)
- Tissue Inhibitors of Metallo-Peptidases (TIMP)
- Thrombospondins

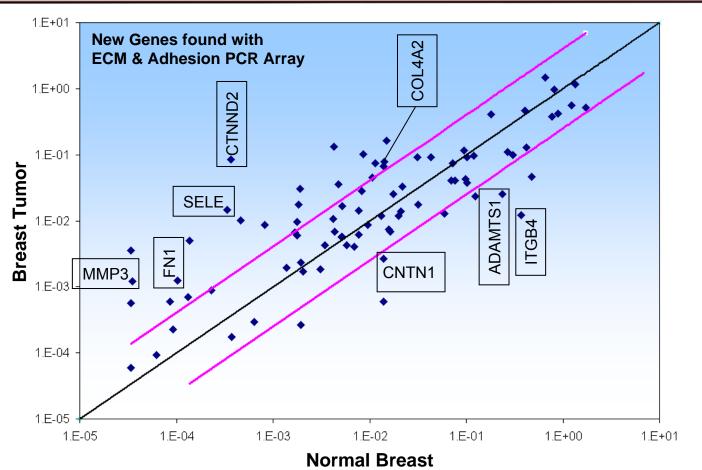


Scatter Plot


Normalized tumor gene expression levels (log₁₀) versus normal tissue


• 38 genes with significant change; 27 up- & 11 down-regulated in tumor

• 38 genes with significant change; 27 up- & 11 down-regulated in tumor



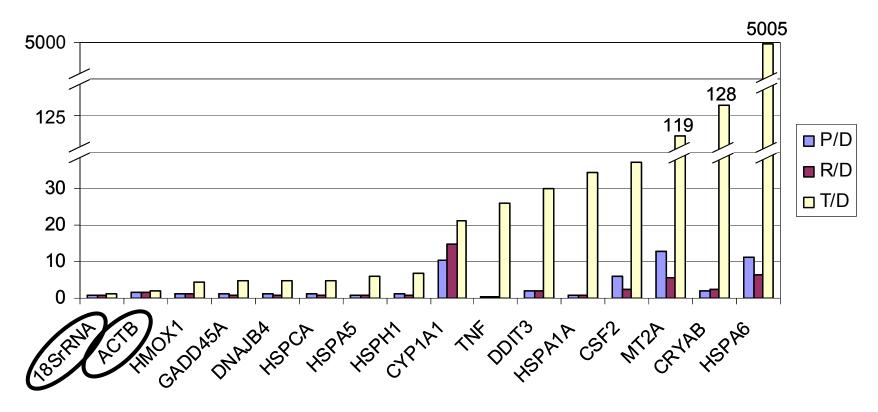
• 38 genes with significant change; 27 up- & 11 down-regulated in tumor

- 38 genes with significant change; 27 up- & 11 down-regulated in tumor
- **CONCLUSION:** Verifiable changes in cell adhesion-related gene expression upon oncogenesis of these and other breast tumors

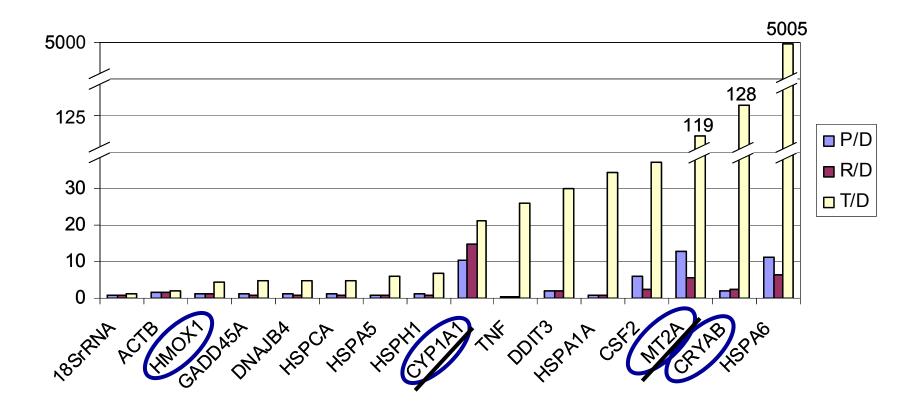
Topics to be Covered

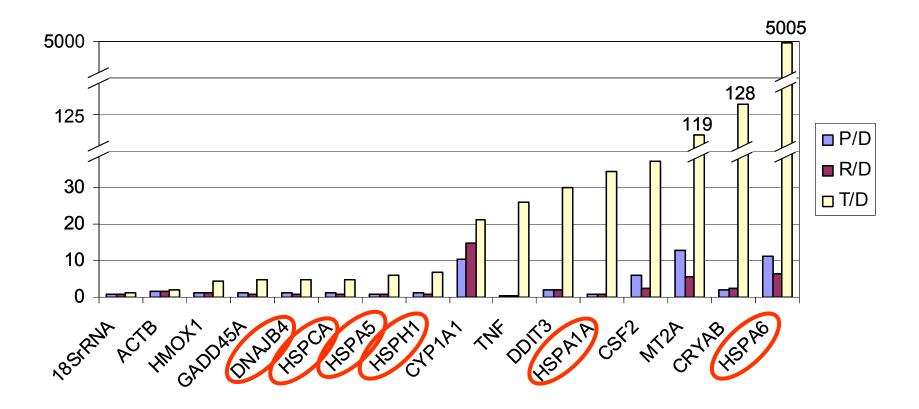
- Introduction to the PCR Array
 - What <u>IS</u> the PCR Array?
 - PCR Array System Brief Protocol Overview
- Biologically Relevant PCR Array Performance
 - Sensitivity, Specificity, Reproducibility, & Reliability
- Application of the PCR Array
 - Immunology Application Example:
 - Monitor the Induction of Cytokines
 - Cancer Application Example:
 - Explore the oncogenic route taken by two breast cancer tumors
 - Toxicology Application Example:
 - Ascertain Liver Toxicity of Similar Drug Candidates

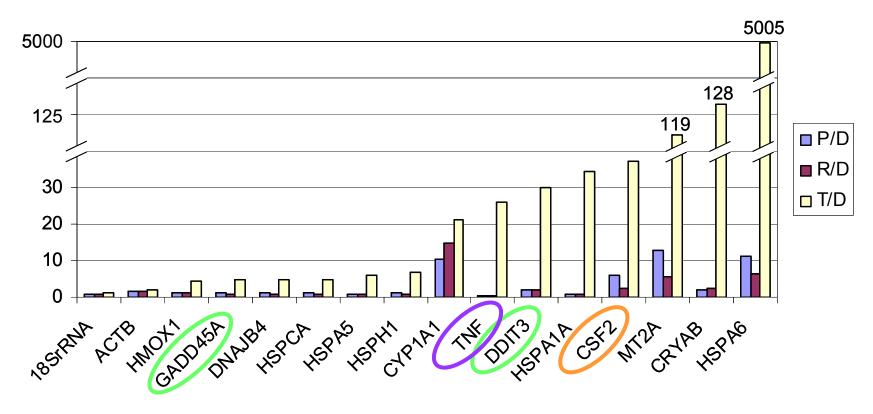
Toxicology Research Application Example

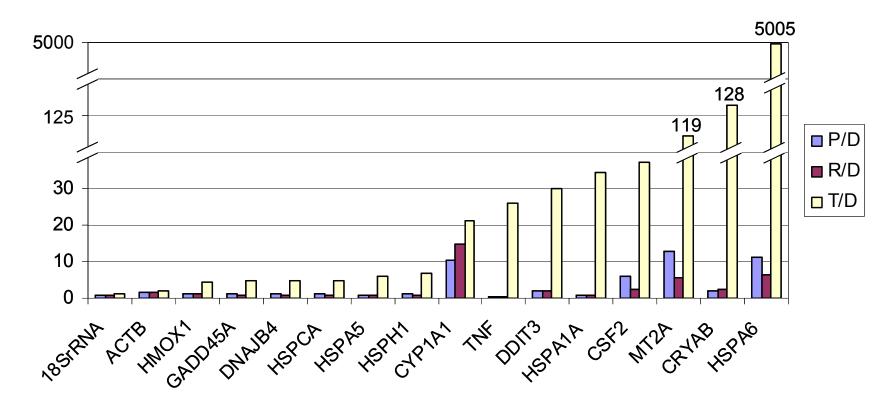

- Rezulin (Troglitazone or "Tro" or "T"), a glitazone PPARγ agonist, was approved for treatment of type 2 diabetes mellitus, but was withdrawn from the market due to idiosyncratic liver toxicity.
- Two similar drugs, Avandia (Rosiglitazone or "Rosi" or "R") and Actos (Pioglitazone or "Pio" or "P"), are considered to be safe treatments for the same condition.
- The expression profile of key drug metabolism genes should be different in cells treated with Rezulin versus those treated with Avandia and Actos.
- Treat HepG2 cells with these three drugs, and characterize gene expression with the Human Drug Metabolism and Stress & Toxicity PathwayFinder[™] RT²Profiler[™] PCR Arrays.

Summary Drug Metabolism Results


	Pioglitazone		Rosiglitazone		Troglitazone	
Symbol	Fold Change	p-value	Fold Change	p-value	Fold Change	p-value
CYP17A1		•			- 4.4	3.9E-03
CYP1A1	17.8	2.8E-06	21.4	4.3E-06	42.7	1.2E-06
CYP2B6	5.4	7.7E-05	3.5	1.5E-03	4.2	4.5E-04
GPX2					- 9.6	2.8E-03
GSTP1					7.1	2.8E-03
CYP3A5	3.0	2.6E-04	3.3	4.3E-04		
GCKR	3.1	2.2E-06	2.9	3.0E-05		
MPO			3.0	1.7E-03		
MT2A	18.6	1.2E-05	8.1	1.4E-03	297.5	5.5E-07
NAT2					-4.9	5.3E-04
NOS3	6.1	9.7E-07	5.3	3.4E-06	4.2	6.7E-05


Housekeeping Genes


Oxidative / Metabolic Stress


Heat Shock

Growth Arrest & Senescence Inflammation Apoptosis

CONCLUSION: Withdrawn drug with idiosyncratic liver toxicity induces very different gene expression profile changes in HepG2 cells than safer drugs still on the market.

Market Acceptance

Launched May 2005

• V2.0 November 2006, V3.0 September 2007

Current Publication List: 30+

- Most added in last 3 months
- Expected to grow very rapidly
- Core Facility Adoption
 - 5 to 10 more in next 3 months

SUMMARY

Simplicity

- Pathway-focused gene expression to your lab or core facility
- Three-component system: arrays, master mix, first strand kit
- Two-hour protocol from RNA to data

Breadth of Pathway Content

- Profile the genes and pathways that you really care about
- More than 45 pathways for human, mouse, and rat
- Customizable by gene, set, or pathway

Real-Time PCR Performance

- Reliability, Reproducibility, Sensitivity, Specificity
- Application Examples
 - Cancer and Toxicology Research
- How can <u>YOU</u> use PCR Arrays in <u>YOUR</u> research?

FREE PCR Array Trial Offer

For First-Time Customers

- First time users may request two free PCR Arrays:
- Package includes Technical Resources and a special quote (50% OFF) for the rest of the PCR Array System!
- Contact your Account Manager: Call Toll-Free: 888-503-3187 or 301-682-9200 Email: support@superarray.net

PCR Arrays

An Advanced qPCR Technology to Enhance Your Analysis of Pathways

RT² Profiler PCR Arrays

Microarray Profiling Capabilities with Real-Time PCR Performance

Questions?

Contact Technical Support M-F 9AM-6PM Eastern Telephone: 888-503-3187; Email: support@superarray.net

