Methods for qPCR Analysis

Renée Horner

Queen of qPCR
Ambion, Inc.
rhorner@ambion.com

Date:Wed, 23 Apr 2003

From: "Dr Stephen A Bustin"

To: "Renee Horner"

Subject: Re: UK NA quantification meeting

Fab. Absolute vs relative is a great idea, although you must bear in mind that as conference organiser if I do not agree with any speaker's opinion they will be bundled off to the Tower of London.

S.

Methods of Analysis

- Absolute quantitation
- Relative quantitation
- Comparative quantitation

Why absolute quantitation?

- Gives a measure of copy number
- Viral load determination
- FDA filing
- Inter-lab comparisons

Why is absolute quantitation not currently feasible?

- There is no reliable method for preparing, quantitating and storing RNA standards
- No NIST traceable standards

Next Best Alternatives?

 Synthetic templates known to come up at a certain Ct value-"semi quantitative PCR"

Why relative quantitation?

- Does not require that you know the copy numbers for the standard curve
- Can be used to determine fold increases and decreases in gene expression
- There is no need to "over optimize" the efficiencies

What is needed for relative quantitation?

- Any sample that can be used as a comparison for other samples-"calibrator"
- A serial dilution of the calibrator to give a standard curve in terms of 1x, 2x, 10x, etc

Relative qPCR Data

qPCR Gene Expression Analysis

Sample	GOI	Norm	GOI/Norm	Treated/Untreated
Untreated 1	25.01	45.99	0.54	1.00
Treated 1	16.05	14.26	1.13	2.07
Untreated 2	35.40	89.10	0.40	1.00
Treated 2	42.75	57.72	0.74	1.86

 In both animals, the GOI is expressed twice as much as in the treated areas as the untreated areas. This data verifies the array data.

Why comparative quantitation?

- Mathematical determination of relative quantities
- No standard curve needed
- Higher throughput
- Best used when particular ratios are expected or are verifying a "trend"

THE RNA COMPANY®

What is needed for comparative quantitation?

- Calibrator sample used as a 1x standard
- Samples that are prepared identically
- Ideally, if normalizing the results, your
 GOI and the normalizer will have the same efficiency

Comparative Quantitation

Ct GOI - Ct norm = \triangle Ct

 Δ Ct Sample - Δ Ct Calibrator = $\Delta\Delta$ Ct

Relative quantity = $2^{-\Delta\Delta Ct}$

Genotyping **Experimental Rationale**

Sample **Type**

Genome **GOI**

Genome Normalized **Equivalents Equivalents** norm

Homozygous 2

1.0

Heterozygous 1

0.5

Null

0.0

qPCR Genotype Analysis

Well	Dye	Replicate	Ct	
E1	FAM	b	22.26	h
F1	FAM	b	22.29	├ wt Calibrator
E1	HEX	b	26.05	
F1	HEX	b	26.03	
A3	FAM	С	40	h
A4	FAM	С	40	Sample MC205
A3	HEX	С	24.84	Sample MC305
A4	HEX	С	24.17	Ρ
A7	FAM	s	19.52	h
A8	FAM	S	19.1	L G1- A C102
A7	HEX	S	23.92	Sample AS103
A8	HEX	s	22.33	P
H11	FAM	zp	40	h
H12	FAM	zp	40	Sample TH600
H11	HEX	zp	24.88	
H12	HEX	zp	26.04	

	ΔCt	$\Delta\Delta Ct$	$2^{-\Delta\Delta Ct}$	Genotype
wt Calibrator	-3.77	0.00	1.0	wt
Sample AS103	-3.82	-0.05	1.0	hm
Sample TH600	-2.33	1.44	0.4	ht
Sample MC305	15.50	19.26	0.0	null

Distribution of Genotype Results

Comparative quantitation

Ct Sample - Ct Calibrator = Δ Ct

Relative quantity = $2^{-\Delta Ct}$

Gene Expression Results

	Ave Ct	dct	2^-dct	1.8^-dct
WT	26.87	0	1.00	1.00
TG 1	28.45	1.58	0.33	0.40
TG 2	29.32	2.45	0.18	0.24
TG 3	27.25	0.38	0.77	0.80
TG 4	28.36	1.49	0.36	0.42

The expression of Gene X is repressed in the transgenic mouse lines relative to wild type mice

From: "Rudy Spangler"

To: "Renee Horner"

Subject:_ comparative measures

Date:Wed, 21 May 2003

Renee

attached is a slide that i use to describe how i analyze data the example has only 4 samples so it will fit on a slide, 2 controls and 2 experimentals the geometric Ct values are transformed to arithmetic emissions values by 1/2°CT this number for me is multiplied by 10⁷ ... because then actin (Ct about 16) is equal to 100 then i transform the emission values to logs for logs, ratios are created by subtracting rather than division every value is transformed to a ratio with respect to the average of the 4 samples this removes the differences in the absolute emission from gene to gene the averages of the ratios for all the genes in each sample are determined and used as a "normalizer" alternatively, the averages of the ratios of selected genes can be used as a normalizer

THE RNA COMPANY®

rudy

- the geometric Ct values are transformed to arithmetic emissions values by 1/2^CT multiplied by 10^7
- transform the emission values to logs for logs, ratios are created by subtracting rather than division
- every value is transformed to a ratio with respect to the average
- the averages of the ratios for all the genes in each sample are determined and used as a "normalizer"
- alternatively, the averages of the ratios of selected genes can be used as a normalizer

	g01	g02	g03	g04	g05	g06	
C1							
C2							
S1 S2		Emiss	$ion = \frac{1}{2}$	2^_Ct	x 10^7		
52		LIIII			X 10 1		
	g01	g02	g03	g04	g05	g06	
C1		J				0	
C2							
S1			sf ⊏mi		Valua		
S2			of Emi				
	Avg g01	Avg g02	Avg g03	Avg g04	Avg g05	Avg g06	
	g01	g02	g03	g04	g05	g06	
C1 C2	Log	f Emis	ssion \	/alue -	- gene	Ava	Avg C1
S1	Log of Emission Value - gene Avg						Avg C2
S2							Avg S1 Avg S2
02							Grand Avg
	g01	g02	g03	g04	g05	g06	
C1	(Log of Emission Value - gene Avg) -						
C2	(Leg et Ethissiert value gene Avg) -						
S1	Sample Avg - Grand Avg						
S2	Sample Avy - Grand Avy						

Conclusions

Absolute quantitation

- Standard curve
- Standards must be accurately quantitated
- Best used for viral load determination

Relative quantitation

- Standard curve
- Standards are serial dilutions of a calibrator template
- Best used for gene expression studies

Comparative quantitation

- Mathematical determination
- Calibrator sample used as a 1x standard
- Best used when particular ratios are expected or to verify trends

Acknowledgements

- Rudy Spangler, Rockefeller University
- Greg Shipley, University of Texas Medical School
- Beth Israel Deaconess Medical Center
- Transgenic/Gene Targeting Facility, Dana Farber
- Trish Hoener, Ambion Inc.
- qpcrlistserver Yahoo group

