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Abstract

In this paper, we generalise a previously-described model of the error-prone polymerase chain reaction (PCR) reaction to
conditions of arbitrarily variable amplification efficiency and initial population size. Generalisation of the model to these conditions
improves the correspondence to observed and expected behaviours of PCR, and restricts the extent to which the model may explore
sequence space for a prescribed set of parameters. Error-prone PCR in realistic reaction conditions is predicted to be less effective at
generating grossly divergent sequences than the original model. The estimate of mutation rate per cycle by sampling sequences from
an in vitro PCR experiment is correspondingly affected by the choice of model and parameters.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: PCR; Polymerase chain reaction; Error-prone; Model

1. Introduction and background

The polymerase chain reaction (PCR) is an in vitro
method capable of producing large amounts of identical
copies of a gene or other specified nucleotide sequence
from a small amount of DNA (Erlich, 1989; Mullis and

Abbreviations: The following abbreviations are used in this paper:
PCR—polymerase chain reaction; DNA-—deoxyribose nucleic acid;
MDM-—mutation data matrix; MMo—Moore and Maranas’ original
model of error-prone PCR; MMc—Moore and Maranas’ model
generalised to an arbitrary number of template sequences, but with
constant amplification efficiency; MMv—Moore and Maranas’ model
generalised to an arbitrary number of template sequences, with
variable amplification efficiency.

*Corresponding author. Present address: Scottish Crop Research
Institute, Invergowrie, Dundee, DD2 5DA, UK. Tel.:
+44 1382562731 ext. 2405; fax: +44 1382 568578.

E-mail addresses: l.pritchard@scri.sari.ac.uk (L. Pritchard),
d.w.corne@ex.ac.uk (D. Corne), dbk@umist.ac.uk (D. Kell), jjr@
aber.ac.uk (J. Rowland), mkw(@aber.ac.uk (M. Winson).

"Present address: Department of Computer Science, Harrison
Building, University of Exeter, Exeter, EX4 4QF, UK.

2Present address: Department of Chemistry, Faraday Building,
UMIST, PO Box 88, Sackville Street, Manchester M60 1QD, UK.

0022-5193/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jtbi.2004.12.005

Faloona, 1987; Sun, 1995). PCR is essentially a three-
stage process that amplifies the region of DNA lying
between two short stretches of sequence that comple-
ment primer sequences (Newton and Graham, 1997). In
this process double stranded DNA template is separated
into two single strands by heating (denaturing), then the
reaction is cooled so that primers complementing the
short stretches of DNA either side of the region of
interest may bind (annealing). DNA polymerase then
uses the template sequence to extend the bound primer
(extension). A simple formula for the final number of
copies of the target double-stranded sequence under
ideal conditions is known for numbers of cycles greater
than two: (2" — 2n)x where n is the number of cycles, 2n
represents products after the first and second cycles that
have undefined length due to having bound only one
primer, and x is the number of copies of the original
template (Newton and Graham, 1997).

Initially, PCR found use mostly for the accurate
amplification of known DNA sequences, but PCR-
based gene manipulation has become invaluable for the
alteration of genetic information at the molecular level,
permitting site-directed mutagenesis of PCR products at
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an arbitrary distance from the ends of the template
sequence (Barik, 1998; Tait and Horton, 1998). One
such general mechanism for inducing randomised
nucleotide sequences via PCR is the use of mutagenic
(overhanging) primers. This form of mutagenic PCR
also found a crucial role in in vitro selection methods (a
protocol in use before PCR itself was used to generate
the initial, randomised libraries) (Nicuwlandt, 1998).
With in vitro selection a random oligonucleotide library
would be expressed and screened; high-performing
variants from this library would then be retained and
accurately amplified, and the expression/screening cycle
would begin again, in analogy with Darwinian selection.

Error-prone PCR introduces random copying errors
by imposing imperfect, and thus mutagenic, or ‘sloppy’,
reaction conditions (e.g. by adding Mn>* or Mg>* to the
reaction mixture (Cadwell and Joyce, 1991; Leung et al.,
1989)). This method has proven useful both for genera-
tion of randomised libraries of nucleotide sequences, and
also for the introduction of mutations during the
expression and screening process in a mutagenesis step.

While early directed evolution experiments were
largely based on selection-amplification procedures,
more recent protocols incorporate gene shuffling as the
major mutagenic process. The essential procedure of
stepwise screening, where the mutant library is screened
for the desired function and either the fittest protein or
some recombinant of several of the fittest mutants
becomes the parent for the next generation, remains the
same (Moore et al., 1997; Voigt et al., 2001; Zhao and
Arnold, 1997). Although the emphasis of more recent
mutagenesis methods is on shuffling, point mutations
remain likely to occur even when not purposefully
induced (Sun, 1995). In early studies of PCR, substitu-
tion, addition and deletion of bases by DNA polymerase
was noted and several models of the substitution process
have been proposed to describe this. We briefly
summarise some of these approaches below.

The theory of Galton—Watson processes has been
employed to determine the theoretical proportion of
DNA sequences with no mutations after n PCR cycles,
assuming perfect amplification efficiency, and a constant
mutation rate u (Krawczak et al., 1989). This and some
other models, e.g. Hayashi (1990) however only report
the fraction of perfect copies, and give no detailed
information about any mutations that occur, such as the
nature of substitutions or their locations.

PCR is represented as a bifurcating tree in the model
of Weiss and von Haeseler (1995), and the distribution
of duplication events between random pairs as a
function of amplification efficiency, number of tem-
plates, mutation rate and number of PCR cycles is
found. An advance seen in this model is its examination
of the influence of variable amplification efficiency. The
substitution rate was assumed to be uniform and base-
independent, however.

In Sun (1995) the author also represents PCR as a
branching process, studying the number of mutations
and the distribution of the Hamming distance between
randomly-selected pairs of product sequences after n
PCR cycles for arbitrary mutation rate and amplifica-
tion efficiency. This work is a generalisation of the
models proposed by Hayashi (1990), Krawczak et al.
(1989) and Maruyama (1990). However, none of these
models take base-dependent rates of substitution into
account.

We take as our starting point in this paper the model
of error-prone PCR proposed in Moore and Maranas
(2000), with the aim of extending it to incorporate
arbitrary template population size and amplification
efficiency. This model appears to have been constructed
with the particular aim of calculating the probability
that a given nucleotide sequence will be generated in a
single error-prone PCR experiment, and has a different
structure to the models described above, being built
around the recursive application of a mutation data
matrix of base substitution probabilities, thereby mod-
elling a base-dependent mutation rate. This base-
dependence is an improvement over, e.g. the models
described in Eckert and Kunkel (1991) and Sun (1995).
The original results of Moore and Maranas (2000) were
only generalised for a total number N of PCR cycles, but
not for either variable amplification efficiency or
variable template population. Both of these may be
important factors for mutagenesis by ‘sloppy’ PCR, as
they would be expected to affect the overall, observed
mutation rate for the experiment.

One disadvantage of the recursive MDM approach in
comparison with models based on branching processes
is that it is not directional in terms of sequence space.
Each successive sequence that is sampled from the
virtual PCR pot is a random sampling from the entire
sequence space potentially reachable by the experiment,
rather than a sampling of the sequence space described
by a single genealogy of sequences rooted at the
template. The models described in Moore and Maranas
(2000) and extensions in this paper therefore cannot
provide useful information on the sequence space
covered by a single PCR experiment, in terms of
Hamming distance between randomly-selected pairs of
sequences from one PCR pot, unlike the model of Sun
(1995). The models do however provide a useful
estimate of the probability, taken over many experi-
ments, of obtaining a specified sequence given a
particular template sequence.

In this paper, we generalise the model proposed in
Moore and Maranas (2000) to an arbitrary number of
initial template sequences (PCR rarely actually begins
from only two strands). Additionally, since amplifica-
tion efficiency for any particular cycle may be dependent
on the population size at the time of that cycle, or some
other factor, we generalise the model to account for this
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also. That the population size in any cycle of a PCR
experiment is dependent on the initial population size,
and may affect the progress of error-prone PCR was
suggested in the original paper (Moore and Maranas,
2000), and is described more formally herein. We
consider that some plausible causes of variation in
amplification efficiency with population size/number of
cycles may be:

® As population size increases, the number of free
nucleotides relative to the number of sequences falls.
The probability of a complete extension of the
sequence in later cycles may be reduced, as a
result

® As the experiment proceeds, the proportion of active
polymerase enzyme falls, relative to the number of
sequences present, potentially reducing the efficiency
of later cycles

® As the experiment proceeds, the accumulated degra-
dative effect of thermal cycling may reduce the
efficiency of the Tag polymerase.

The estimate of per-cycle mutation rate in an in vitro
PCR experiment is often made by random sampling of
sequences from the final ‘pot’. The distribution of the
mutation frequency per sequence is expected to vary
under the effects listed above, and this in turn affects
the estimate of per-cycle mutation rate. We describe the
effects of model and parameter choice on this
estimate.

2. Model

The protocol of the model proposed by Moore and
Maranas (2000) may be summarised as follows:

1. An initial mutation data matrix is defined represent-
ing nucleotide-dependent substitutions for a single
cycle of the PCR experiment:

Myy Myc My Myr

Mcy Mcc Mcg Mcr
M= . )
Mgy Mgc Mg Mgr

Mry Mrc Mr¢ Mrr

Here, M; represents the probability that nucleotide i
will be substituted by nucleotide j in a single PCR
cycle.

2. Mutation data matrices for successive cycles of the
PCR experiment are generated (this is assumed to be
independent of other factors, such as the uneven
depletion of nucleotides that may have a large effect

in real PCR).
5ij5 n= 0,

CZ = Mija 1 n= 1, (2)
YokeacerCiu My, n=2,

where 0;; is the Kronecker delta.

. The number of sequences produced at each cycle n of

a PCR experiment that runs for a total of N cycles is
calculated as Zy,. These values will usually be
dependent on the amplification efficiency, which itself
may be variable and dependent on the initial
population size. For an arbitrary but constant
amplification efficiency 4, and arbitrary initial num-
ber of template sequences Sy, after N total PCR
cycles the number of sequences present that are the
result of n extension steps is given by

Znon = (;V ) Sy 3)

as suggested in Moore and Maranas (2000) (proof in
Appendix B). The total number of sequences Sy at the
end of the experiment is given by (see Appendix A)

Sy = So(1+ D). 4)

For an arbitrary amplification efficiency that is also
dependent on the current PCR cycle, we performed
the recursive procedure explicitly. The analytical
solution of the total number of sequences at the end
of the experiment Sy is given by (Appendix C)

N
Sy = So [T +20). (5)
k=0

The total number of sequences generated by an in
silico experiment as described here, and the number
of sequences generated after n cycles of such an
experiment, are determined by these equations. The
only influence of stochasticity on these models is
derived entirely from the substitution process. The
assumption is made throughout these models that
mutations at different locations along the sequence
are independent. This is probably true if, as is the case
with in vitro selection, there is no selective pressure
between rounds of screening. As such, a sum of the
product of the mutation data matrix for each
generation and the proportion of all sequences in
the final PCR pot contributed by that generation will
produce an aggregate mutation data matrix repre-
senting the probabilities of any base having mutated
by cycle N, represented by Pj.

1 N
N n
PY = S EO ZyaCl. (6)

. The application of this aggregate mutation data

matrix to each base in a given template sequence
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generates a sequence that is equivalent to the random
selection of a single sequence from the final PCR
pot.

For simulations in which the amplification efficiency
is not constant throughout the reaction, the variation
may take one of a range of forms. There may be a linear
decrease in efficiency with the number of completed
cycles (analogous to the progressive denaturing of
polymerase) or a linear decrease with total population
(analogous to depletion of the relative concentration of
nucleotides, polymerase or primer etc. with respect to
template). Alternatively, both effects may be seen
simultaneously, or there may be some combination of
unconsidered nonlinear effects. For the simulation of
variable amplification efficiency described in this paper
we implement a numerical solution, describing only a
linear decrease in amplification efficiency with increasing
total population, bounded by the initial template
population at the initial amplification efficiency and an
upper limit on the population size at amplification
efficiency = 0. This makes the assumption that the
dominant effect on amplification efficiency will be
expressed through the depletion of reagents for sequence
extension. Selecting only one dominant effect allows for
comparison between the original Moore and Maranas
(2000) model and generalised variants incorporating
terms for variable amplification efficiency without
introducing further issues of parameterizing the
balance between polymerase degradation and dilution
effects.

3. Results and discussion

We implemented the Moore and Maranas (2000)
model of PCR, and the variants described above in a
computer program written in the Python programming
language by one of the authors (LP). The three variants
are named, and differ from one another, as described
below:

1. MMo: The model of PCR as described in Moore and
Maranas (2000). The model assumes perfect amplifi-
cation efficiency (A = 1) and initially only two single
strands of template sequence.

2. MMc: Generalisation of the MMo model to an
arbitrary number of initial template sequences, and
possibly imperfect but constant amplification effi-
ciency (A<1)

3. MMv: Generalisation of the MMo model to an
arbitrary number of initial template sequences, and a
variable amplification efficiency that decreases line-
arly as the total sequence population size grows to a
predefined limit.

3.1. Variation of the final number of sequences with
models

For in vitro PCR experiments, the sequence popula-
tion does not increase indefinitely in an exponential
manner, but often reaches an upper limit due to
constraints of polymerase, primer and nucleotide avail-
ability, with secondary effects from polymerase degra-
dation. Figs. la—d describe the growth of total
population of sequences in the PCR reaction with
number of cycles for the three model variants. In the
models, these results are entirely deterministic and are
found by solving Egs. (4) and (5) for the appropriate
parameters. For in vitro PCR, this idealism is probably
not appropriate, and there is likely to be stochastic
variation that deviates from these models.

As can be seen from Fig. la, the original model
described in Moore and Maranas (2000) results in
exponential growth of the number of sequences and, as
implied by the model, this growth remains unchecked.
This is an unrealistic model of population increase in
real PCR experiments, as population growth is even-
tually limited, possibly by the factors detailed above.

Fig. 1b demonstrates that generalisation of the M Mo
model to arbitrary initial population and arbitrary
amplification efficiency does not result in a pattern of
population growth that is any more representative of a
real PCR experiment. As in the M Mo model and Fig.
la, population growth is permitted to continue un-
checked. The introduction of a constant, imperfect
amplification efficiency (A< 1) is therefore not sufficient
to describe the commonly-observed variation with cycle-
number of total population in an in vitro PCR
experiment.

In Fig. lc, population growth for the MMv model
with variable amplification efficiency is described. The
introduction of variable amplification efficiency to the
model causes a variation of the population curve from
those of the MMo and MMc models, where Sy and A
are large enough for the total population size to reach its
limit. A relationship in which amplification efficiency
increases with cycle number would result in even faster
exponential growth than the MMo model. It is
presumed that in real PCR experiments, amplification
efficiency decreases with successive PCR cycles. To
reflect this effect in the current study, amplification
efficiency is set to decline linearly to zero at the
population limit, with increasing total population. From
Fig. lc, it is clear that, until the total population
approaches an upper limit, growth of the sequence
population proceeds exponentially as in the MMc
model. Only at higher initial amplification efficiencies
does the population size approach the limit, causing the
plot to differ from that of the MMo model (Fig. 1a).

As is expected, increasing the initial population in the
MMyv model causes the population of the PCR
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Fig. 1. Total population size S, against cycle number n for (a) MMo, the PCR model described in Moore and Maranas (2000); (b) the MMc model
with amplification efficiencies 2 = 1 (solid line), 4 = 0.8 (dashed line), A = 0.6 (dotted line), 4 = 0.4 (dash-dot line) and A = 0.2 (thick line), and an
initial template population size Sy = 10%; (c) the MMv model with variable initial amplification efficiencies of o = 1 (solid line), iy = 0.8 (dashed
line), 29 = 0.6 (dotted line), 1y = 0.4 (dash-dot line) and 4y = 0.2 (thick line), an initial template population size of Sy = 10*, and population size limit
of Sjimz = 10'°, and (d) the MMv model described above with initial amplification efficiency 4y = 0.8, total population size limit Sy,; = 10" and
initial population size Sy = 1e6 (solid line), Sy = le4 (dashed line), Sy = le2 (dotted line), and Sy = 2 (dash-dot line).

experiment to reach the imposed upper limit after fewer
cycles, and this effect can be seen in Fig. 1d, where for
an initial amplification efficiency of 0.8, only the smaller
(< 10%) initial populations fail to reach the upper limit of
population. On a linear scale, the population profile is
approximately sigmoidal, as routinely observed in RT-
PCR experiments.

3.2. Variation of Zn, by model

Error-prone PCR may be used deliberately to
generate random mutations, but the potential for
generating random mutations is always present in any
PCR experiment. In either case it is useful to be able to
predict and understand the distribution and frequency
of occurrence of random mutations. When deliberately
generating random mutations to explore sequence space
it is helpful to know the size of sequence space that may
potentially be explored by the generated mutations;
estimates of mutation rate per cycle and an under-
standing of how to maximize overall mutation rate per
sequence are important to this aim. In the case of
amplifying or proof-reading PCR, where mutations are
undesirable, it is useful to know how many random
mutations are likely to occur, and how best to minimize
them. Again, an estimate of the mutation rate per cycle

and an understanding of how to minimise overall
mutation rate will be important. If the mutation rate is
constant for each generation, it is expected that the
number of mutations observed in a single sequence
extracted from the final pool will be proportional to the
number of extension steps of which it is a product. What
is important is how many sequences from each genera-
tion are present in the final pool. This is represented by
Z N n, Which denotes how many sequences present in the
pot after a total of N cycles are the result of n extension
steps. Control of the modal number of extension steps
may therefore be an important mechanism for determin-
ing overall mutation rate.

For example, we might consider two hypothetical
PCR experiments with the same total number of cycles,
MDM and the same final total number of sequences. In
one (perhaps unlikely) experiment, amplification effi-
ciency begins at a low value and increases towards the
end of the experiment; Zy, is then greatest at larger n
(‘late-peaking’). In the other experiment, amplification
efficiency is initially high, but drops very rapidly; Zy, is
greatest at smaller n (‘early-peaking’).The greatest
contribution to the final sequence set in the latter,
‘early-peaking’ experiment, comes from sequences that
have not been through many cycles and so do not carry
many mutations. The ‘late-peaking’ experiment by
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Fig. 2. Number of sequences Zy , resulting from » extension steps after N = 30 cycles, against number of extension steps #, for (a) the MMo model;
(b) the MMc model with initial population size Sy = 2, and amplification efficiencies A = 1 (solid line), 2 = 0.8 (dashed line), 1 = 0.6 (dotted line),
.= 0.4 (dash-dot line) and A = 0.2 (thick line); (c) the MMc model, with initial amplification efficiency A = 0.8, and initial population sizes Sy = 10°
(solid line), Sy = 10* (dashed line), Sy = 107 (dotted line) and Sy = 2 (dash-dot line); (d) the MMy model with an upper population limit Sy,,;, = 10,
initial population Sy = 2, and initial amplification efficiencies /o = 1 (solid line), 49 = 0.8 (dashed line), 4y = 0.6, (dotted line), 4y = 0.4 (dash-dot
line) and 7y = 0.2 (thick line); (¢) the MMv model with an upper population limit Sj;,;, = 10°, initial population Sy = 10*, and initial amplification
efficiencies of Ao = 1 (solid line), 49 = 0.8 (dashed line), 19 = 0.6, (dotted line), 1o = 0.4 (dash-dot line) and 4y = 0.2 (thick line), and (f) the MMv
model with an upper population limit of Sy, = 10, initial amplification efficiency /o = 0.8 and initial population sizes Sy = 10° (solid line),

So = 10* (dashed line), Sy = 10? (dotted line) and Sy = 2 (dash-dot line).

contrast will contain mostly sequences that are the
accumulated result of several mutation cycles, and
would be expected to carry a greater mutational load.
As a result, the extent of sequence space sampled by
several ‘early-peaking’ experiments may be expected to
be less than that sampled by several relatively ‘late-
peaking’ experiments.

In this section, we examine distributions of Zy, for
the three models, MMo, MMc and MMyv, where the
total number of PCR cycles is 30. In all three model
types, Zy,, is deterministic, following from Eqgs. (3) and
(5), which were used to generate the plots in Fig. 2. We
again note that the distribution of Zy, may be
influenced by stochastic effects in the case of in vitro
PCR.

Zy,, for the MMo model as defined in Moore and
Maranas (2000), where N = 30, describes a symmetrical
distribution, with most sequences in the final pot being
the result of 15 or 16 extension steps (Fig. 2a).

The MMc model (Fig. 2b) introduces an arbitrary,
but constant, amplification efficiency. As amplification
efficiency falls from 4 = 1, the total number of sequences
produced also declines, and so does the modal number

of extension steps (and therefore overall mutation rate
per sequence) for each sequence in the final pot.

As there is no upper limit on the total number of
sequences in the MMc¢ model, it would be expected that
if the initial template population was to be increased for
constant A, no shift in the modal value of »n for the
sequences would be seen, but that the total number of
sequences that are the result of n extension steps would
increase. The overall observed mutation rate would
therefore be expected to be more dependent on 4 than
on Sy. This is demonstrated in the plot of Zy , against n
in Fig. 2¢, and in Fig. 4b.

The gross effect of varying initial amplification
efficiency for the MMv model (Fig. 2d) is much the
same as that seen with the MMc model (Fig. 2b) for an
initial population size Sy =2. The effect of varying
initial population size, because it causes the rate at
which / varies to change in turn, is significant and
marked (Figs. 2e and f). Fig. 2e has a similar profile of
Zyn scores by cycle to 2d. With an initial population
size Sy = 10%, varying the initial amplification efficiency
(as shown in Fig. 2e) exerts a similar effect by reducing
the modal number of extension steps for each of the final
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sequences as in the MMc model (Fig. 2d). The modal
number of extensions (and to an extent, overall
mutation rate) however, does not begin to fall until A
is greatly reduced. Hence, in contrast to the uncon-
strained MMc model, the MMv model is seen here to be
practically insensitive to changes in 4y once the upper
population limit is reached (this upper limit is reached
for 19=0.6).

When the initial population size is increased from
So =2 to Sy =100 (Fig. 2f) for 4y = 0.8, the upper
population limit Sy, = 10° is not reached, the modal
number of extension steps per sequence in the final pool
varies little, and the overall number of sequences that
are the result of a given number of extension steps rises
much less rapidly than for the MMc model. However, as
the initial template population increases more signifi-
cantly, the population size limit is reached at a smaller
number of cycles, so 4, falls to zero, and the modal
number of extension steps (and implicitly mutation rate)
falls (Fig. 2f), in contrast to the MMc model. The
strategy of varying mutation rate by varying initial
template population size has been used in commercial
mutagenic PCR kits (e.g. Arezi et al., 2002). These
models (Figs. 2¢ and f) imply that these methods are
viable because there is a cycle-wise reduction in
amplification efficiency and/or some constraint on total
population size. It thus appears that the generalised
MMc and MMv models imply a less broad search of
sequence space for in vitro PCR than does the MMo
model.

3.3. Variation in probability of generating a given
sequence by model

As seen above, the inclusion of variable amplification
efficiencies and initial template population sizes implies
a notable effect of these factors on the observed number
of substitutions per sequence (overall mutation rate)
compared to the original Moore and Maranas (2000)
model. In the MMo model, the probability of assem-
bling a sequence S through successive single point
mutations on an original sequence S° after N PCR
cycles is given by

1 N B ,
Mg =<> Zva [ [P0 (7)
SN =

where B is the length of the two sequences and s? and 8
are the nucleotides at position j for sequences S° and S.
This provides a quantitative means of estimating a priori
the fraction of sequences in the final pool that conform
to a target sequence S given the mutation data matrix M
and initial sequence S°. For the generation of functional
nucleotide sequences this is adequate, but for the
generation of functional proteins issues of codon
redundancy must be taken into account with a set of

target sequences S € {T1,T>,...} where T, are nucleo-
tide sequences that encode a desired protein target.

The above description also does not account precisely
for functional targeting. While one may have a good
idea of which residues in a protein sequence one would
wish to adapt for the development of improved or novel
function, this function may also be achieved despite (or
even because of) substitutions at unexpected locations
(e.g. Zaccolo and Gherardi, 1999; Oue et al., 1999).
Also, the final pool of sequences generated by an in vitro
PCR reaction is strongly dependent on the history of
that experiment. A single PCR experiment will typically
sample a hyper-cone of the theoretically accessible
sequence space, whereas the equation describing the
probability of assembling a prescribed target sequence
by the model described herein implies a random
sampling of the whole, theoretically accessible space.

Nevertheless, this probability is a useful metric for
estimating of the extent of sequence space that can be
explored over many experiments given initial parameters
of the model (assuming that each individual experiment
generates a ‘branch’ of sequences independent of the
other experiments in the set). As the model assumes no
branched evolution-like directionality in sequence evo-
lution, its theoretically-accessible sequence space will
approximate a B-dimensional ‘Hamming sphere’, or
hypercube. Each point within this ‘sphere’ represents a
possible target sequence, and the probabilities of the
model generating the prescribed target sequence at any
particular point within this space are not uniformly
distributed, due to the base-dependent substitution
probabilities of the MDM. Thus, the ‘Hamming sphere’
is distorted and, in particular, not all sequences of equal
Hamming distance from the original template S° are
equally likely after a total of N PCR cycles. The uneven
coverage of this space is expected to form a shell-like
hypercube of high probability sequences and a tailing
off of probabilities towards the template sequence
(centre of the space) and towards sequences with B
substitutions, reflecting, in section, the frequency
profiles of Figs. 2a—f.

In order to estimate the coverage of this sequence
space, we used the MMo, MMc and MMv models
described above to estimate the mean probability of
generating 31 target nucleotide sequences containing
from 0 to 30 random base substitutions relative to a
template sequence. One hundred template sequences
were chosen randomly from the complete set of coding
sequences in the fully-sequenced bacterial genomes
available at October 2004 from ftp.ncbi.nih.gov. Ten
in silico PCR experiments were performed for each
template using the MMo model, the MMc model
(20 =0.8,S9=2), and the MMv model with three
sets of parameters: (lg = 0.8,Sy =2, Siimir = 10%),
(o =0.8,80 = 10°, Sy = 10%) and (1o = 0.2, Sy = 10°,
Slimit = 108). The mean probability of obtaining each
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target is plotted for each of the models in Fig. 3.
Probabilities were estimated using an artificial mutation
data matrix (MDM) M defined below:

0.98707 0.00122 0.00559 0.00612

M 0.00122  0.99493 0.00017 0.00367 g
~ | 0.00367 0.00017 0.99493 0.00122 | @®

0.00612 0.00559 0.00122 0.98707

This MDM was also used as a basis for all of the
following model comparisons, (with modifications to
obtain the desired mutation rate per cycle).

Table 1 lists approximate probabilities for obtaining a
specified sequence with each number of substitutions.
From a comparison of the results of models MMo,
MMc and MMy here and in Fig. 3, it can be seen that a
small reduction in A;,; from 1 to 0.8 in both the MMc

10710

1020 f

10*30 +

1040 ¢

P(generating target)

100 |

-60 s s s s s
10 0 5 10 15 20 25 30
substitutions

Fig. 3. The probability of selecting a given sequence with a specified
number of nucleotide substitutions from the final pool of the
simulation, for the MMo model (grey line), MMc model, 2 = 0.8, Sy =
2 (solid line); MMv model, 19 = 0.8, Sy = 2, Siimir = 108 (dashed line);
MMy model, Jy = 0.8, So=10° Sy = 10° (dotted line); MMy
model, g = 0.2, Sg = 10%, Sy = 10% (dash-dot line).

and MMv models, with no change in Sy, results in no
great effect on the probability of obtaining a prescribed
sequence regardless of the number of nucleotide
substitutions. The introduction of variable amplification
efficiency in the form of a limit on population size in the
MMy model (So = 10°, Sy = 10°) drastically increases
the probability of obtaining a prescribed sequence with
fewer than around 15 nucleotide substitutions (by three
orders of magnitude in some cases), and shows a
commensurate decrease in the probabilities of obtaining
a prescribed sequence with more than around 15
substitutions.

This reinforces the earlier suggestion that general-
isation of the Moore and Maranas (2000) model
described in this paper describes systems that favour
exploration of sequence space lying closer to the
template, and that the MMo model may overestimate
the ability of experimental error-prone PCR to explore
regions of sequence space distant from the template. The
corollary of this is that use of the MMo model to
estimate mutation rate per cycle from such sampling of a
PCR experiment may underestimate the true per-cycle
mutation rate of the experiment.

3.4. Variation in mean Hamming distance of generated
sequences from template by model

The measure of mean Hamming distance is a proxy
for overall mean mutation rate, and is dependent on
template length, hence all measurements are normalised
to template length. We examined the effect on the mean
Hamming distance from the initial template sequence of
100 sequences randomly selected from the final pool of a
PCR experiment (emulating the experimental estimation
of mutation rate per cycle) for 100 templates randomly
chosen from a large set of bacterial coding sequences, as
described above, using the MMo, MMc and MMyv
models under a broad range of parameter settings. In
the MMo model, only mutation rate per cycle may be
varied (0.002<u<0.010); for the MMc model, amplifi-
cation efficiency (0.2<4<1.0) and the initial template

Table 1
Approximate probabilities for obtaining the stated number of specified substitutions in a sequence using the specified models and parameters
Substitutions MMo MMc MMv* MMv® MMv*©
0 2.94E-005 7.04E—005 7.64E—005 2.11E—002 2.61E—002
5 1.75E—013 7.83E—014 5.63E—014 8.18E—014 1.33E-013
10 1.73E—022 9.00E—022 3.22E-022 2.18E—024 1.07E—023
15 1.36E—029 1.11E-030 7.61E—030 3.89E—-034 1.02E—032
20 5.27E—037 3.34E—037 1.90E—037 8.02E—044 1.38E—040
25 1.00E—045 2.25E—046 1.16E—045 2.08E—051 7.08E—050
30 9.17E—-053 1.69E—052 3.19E-052 1.67E—062 4.68E—058

MMec: Sy =2, 4 =0.8. MMv:
380 =2 Sjimi = 108 49 = 0.8;
2So = 10° Sjpmir = 108 29 = 0.8;
Sy = 10° Spimic = 10% 19 = 0.2.
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population size were additionally varied (2<S,<10°%).
In addition to these the population limit was also varied
(108 < Sjimir <10'?) for the MMv model.

The settings tabulated in Table 2 were employed in all
combinations available for each model (five run types
for MMo, 100 for MMc and 300 for MMyv). One
hundred sequences were sampled from the final pool in
each case, and the mean Hamming distance between

Table 2

Parameter settings for runs of the MMo, MMc and MMv models

U Lot So Slimit
0.0002 0.2 2 108
0.0004 0.4 107 10'°
0.0006 0.6 103 10!2
0.0006 0.8 104

0.0010 1.0

MMo models varied only the mutation rate, MMc models the
mutation rate u, initial amplification efficiency /o and initial
population Sy, MMv models varied p, 29, So and population limit
Slimir-

017

0.08 1
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Normalised Hamming distance
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sampled sequences and the original template sequence
calculated.

Fig. 4a describes the relationship between mean
Hamming distance (normalised to sequence length) of
sequences in the final pool from their template sequence
for the unaltered Moore and Maranas (2000) model.
There is a monotonic increase in mean Hamming
distance with increasing mutation rate. The indicated
standard deviations suggest that estimation of mutation
rate per cycle from this sampling scheme will be
imprecise.

Reducing the amplification efficiency in the MMc
model (Fig. 4b) results in a decline of mean Hamming
distance from the template, as a proportion of template
length, of sequences in the final pool. The effect is
not strongly dependent on variations in Sy, as might
be expected intuitively. This is explained as a low
amplification efficiency reduces the number of amp-
lification, and so mutation, events for the overall
reaction.

The effect of decreasing amplification efficiency with a
(reachable) limit on total experimental population size is

0.1
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Fig. 4. Plot of mean Hamming distance from the template against mutation rate per cycle for 100 randomly-sampled sequences from the final pool of
a PCR experiment, for 100 randomly-sampled template sequences using (a) MMo model; (b) MMc model with 2 = 1.0 (circles), 4 = 0.8 (star),
2= 0.6 (plus), 2 = 0.4 (cross) and 1 = 0.2 (square). Multiple points for each mutation rate and / indicate results for Sy € {2, 102, 10%, 10%}; (c) MMv
model with Sy = 10°, Sjmi; = 10'? and 4y = 1.0 (solid line), 2y = 0.8 (dash-dot line), /o = 0.6 (dashed line), Ay = 0.4 (dotted line) and 4y = 0.2 (thick
solid line), and (d) a plot of mean Hamming distance from template against initial template population S, and population limit Sy, for the MMv
model with g = 0.8, u = 0.010 (solid line), u = 0.008 (dash-dot line), u = 0.006 (dashed line), u = 0.004 (dotted line) and x = 0.002 (thick solid line).
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seen in Fig. 4c for the MMv model. Here, S is set to
10°, and at this value moderate reductions of 4y do not
have a significant effect on mean Hamming distance as a
proportion of sequence length. As Sy is close to Simir,
the total number of generated sequences is similar for
large values of Ay due to the restriction of total
population size that results from a rapid, early reduction
in amplification efficiency. At lower values of Sy, this
early total population size ‘capping’ effect is not seen,
and a reduction in mean Hamming distance is seen for
each value of u, the same effect as seen for the MMc
model. The upper limit on population size thus has a
similarly limiting effect on the region of sequence space
explored by a PCR experiment, where the initial
template population is large enough. For all A,
increasing p results in an increase in mean Hamming
distance. Variations in 4 during the experiment need not
be controlled only by population size, and this suggests
an alternative mechanism for maximising the explora-
tion of sequence space in a single error-prone PCR
experiment.

Fig. 4d shows the effect of varying Sy and Sy;,;, for a
range of mutation rates at 4 = 0.8. There is a general
tendency for the mean Hamming distance, normalised
to template length, from the template of sequences in the
final pool to decline with increasing Sy, due to the
‘capping’ effect described above. Population limit Sy;,,;
has no effect on mean Hamming distance for low Sy, but
increasing Sy, results, not surprisingly, in an increased
mean Hamming distance for large Sy;. For any
combination of Sy and Sy, increasing u results in a
larger mean Hamming distance from the template for
sequences selected randomly from the final pool.

3.5. Stochastic variation in the results of a model
experiment

In the discussion above, the overall observed muta-
tion rate has been expressed as a single measure over
several experiments in terms of Hamming distance. The
stochastic nature of individual substitutions has the
potential to generate significant variation in observed
Hamming distance from the template of sequences
drawn from the final experimental pool, which is not
described by this single measure. Fig. 5a illustrates the
variation of this measure in a single MMv model
(o = 0.8, Sy = 10*, S}, = 10'°, 1 = 0.010) as a boxplot
of this distance, normalised to template sequence length,
for a randomly-selected bacterial coding sequence. The
interquartile range of this measure is compressed, with
only a single outlier seen. The variation in the mean
value of this measure is shown in Fig. 5b for 10 runs of
the MMv model with the same parameters, for 10
further randomly-selected bacterial coding sequences.
The mean values for all of these sequences lie within the
interquartile ranges seen for the single experiment in
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Fig. 5. Plots indicating the influence of the stochastic substitution
process, plotting for the MMv model with initial amplification
efficiency Ap = 0.8, initial population size So=10*, a limit on
population size Sy, = 10'0, and mutation rate per cycle p = 0.010:
(a) Hamming distance (normalised to sequence length) for 100
randomly-selected sequences from the final pool of an individual
experiment; (b) mean Hamming distance (normalised to sequence
length) for 10 runs of the model for 10 randomly-selected bacterial
coding sequences, and (c¢) mean Hamming distance (normalised to
sequence length) for the 10 runs in subfigure (b) against the %GC
content of the template sequence (linear regression line: y = 0.068 —
0.032x, P<0.0001).
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Fig. Sa, although the means show significant variation
between templates. These differences are explicable in
terms of the variation in %GC content of the template
sequences, as the MDM used (equation 8) favours
conservation of G and C nucleotides, and this relation-
ship is demonstrated in Fig. 5c to be linear
(y = 0.068 — 0.032x, P<0.0001), mean Hamming dis-
tance from the template (normalised to template length)
decreasing with increasing % GC content.

4. Conclusions

Generalisation of the Moore and Maranas (2000)
(MMo) model to include terms for variable amplifica-
tion efficiency and initial template population size
results in a system that tends to generate sequences that
are more similar to the template (in terms of Hamming
distance), by comparison with the MMo model
(Fig. 3).

The introduction of a term for constant amplification
efficiency (MMc model) implies that a reduction in
amplification efficiency reduces the mean Hamming
distance from the template of sequences generated
in the experiment, independently of initial template
population size (Fig. 4b). This extension is not, how-
ever, sufficient to reproduce qualitatively the popu-
lation size profile per cycle for an in vitro PCR
experiment, nor to provide the intuitively-expected
behaviour resulting from variation of initial template
population size.

Introducing a term for amplification efficiency that
varies as the experiment proceeds, such that amplifica-
tion efficiency falls as an upper limit on the sequence
population is approached (MMv model) suggests that
the mean Hamming distance of the final population
from the template is dependent on mutation rate, initial
amplification efficiency, the initial number of template
sequences and the limit on the size of the sequence
population (Figs. 4c and d). Generalisation of the MMo
model to the MMv model also results in the expected
sigmoidal profile of sequence population size, qualita-
tively similar to those generated by RT-PCR, and
recreates the intuitively expected behaviour of varying
initial template population size.

Directly altering the limit on population size is
generally outside the scope of practical experiment,
while increasing mutation rate (e.g. by the addition of
Mn?* or mutagenic polymerase), altering dNTP bal-
ance, and reducing the number of template sequences
are typically used to increase the sequence space
explored in practical experiments. The possibility of
manipulating amplification efficiency directly at defined
stages in an error-prone PCR experiment is identified as
a potential mechanism for more precisely controlling the
overall observed mutation rate per sequence.
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Appendices

The formal proofs in these appendices are structured
and notated to facilitate comparison with the proofs in
Moore and Maranas (2000).

Appendix A. Proof of the total number of sequences after
N cycles (constant amplification efficiency)

Let the initial number of template sequences be Sj.
After 0 cycles (N =0), no amplification has been
performed, and the total number of sequences is S.

So = So. (A.1)

After the first cycle of amplification, the initial
template sequences are still present and will continue
to be present for all N. The number of sequences
generated by this first cycle is equal to the number of
template sequences multiplied by the amplification
efficiency A.

S1 = S0+ SoA = So(1 + 2). (A.2)
After the second and subsequent cycles of amplifica-
tion, the initial template sequences and the sequences

generated by earlier amplification cycles are still present
and will remain for all following N.

Sy =81+ S12=S1(14+2) =Syl +2)(1+2)
= So(1 4+ 2)% (A.3)

The general form of equation (A.3) is
Sy =Sn_1+Sv_id=Sy_1(1+2)=Sy_o(l + 1)

= Sy-n(1+ )"
= So(1 + ). (A4)

Appendix B. Calculation of Zy ,(constant amplification
efficiency)

We represent the number of strands that are the
product of n extension steps after N total PCR cycles
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by Zy, and amplification efficiency by A. Initially,
Zoo = So (B.1)

but since these template sequences are not altered in the
experiment, and are the only sequences not to be the
product of any PCR amplification,

Zno = So. (B.2)
Also, after N cycles, no sequences can be the result of

more than N extension steps, so

Zya=0, n>N. (B.3)

After N PCR cycles, a sequence that is the result of n
extension steps must have been amplified from a
sequence that was itself the product of n — 1 extension
steps. The sequence must either have been produced in
the current, Nth cycle (i.e. was amplified from
one of Zy_1,—1 sequences), or was already present
in the reaction mixture (i.e. is one of Zy_;, sequences).
So

ZN,n =ZN—1,n—1/1+ZN—1,n- (B4)

As in Moore and Maranas (2000), we construct a
proof by induction of

N
Zny = (n ) Soi" (B.5)

by first demonstrating that it is valid for n = 0, 1 and 2.
For n=0,

N
Zno =Sy = (0>Soz°. (B.6)
For n =1, from (B.4)

Zni=Zn-11+Zn-104

=Zyn_11+ Sol

=Zn_21 +Zn_204+ Soi

=Zy_2,1 + 2804

=Zn_31+ 3So/

=Zn-i,1 +kSo/, VO<k<N. (B.7)

At the limit of recursion, k = N and
ZN_j) =2ZNn-N1 =201 =0 (B.8)

N
= Zn1=Zo) + NSo/ = ( | )sozl. (B.9)

For n =2, from (B.4)

Znay=Zn 12+ Zyn_114
=Znop+Zy o1+ Zy_11l
=ZA+ 2o+ Zyaid+ Zn_11)

N-1
=0y Z
k=1
N-1

yi Z kSoA

k=1

N 2
- (%5

To complete the proof by induction, we now assume
(B.5) to be true and use it to demonstrate that

N
inJrl
n-+ 1>SO

(B.10)

Znmet = < (B.11)

as follows:

Iyt = ZN-ipr1 + Zy_1p4
=ZNop1 +Zn-aph+ Zn_14h
=Zn_sptl + ZNsph+ ZN_oph+ Zn_1 4
=M+ Znsrn+ -+ Znopn+Zn_1)

N=1
=0 Zkn- (B.12)
k=n
Substituting from (B.5),
N1
= Znnsl =AZ( )So/l”. (B.13)
k=n n
Letting s = k — n,
(N—n)—1
_ n +] n + S
Zn 1 = Sol" ; ( " )
N
= SoA" . B.14
<n + l> 0 ( )

Appendix C. Proof of total number of sequences after NV
cycles (arbitrary, variable amplification efficiency)

Let the initial number of template sequences be Sy
and the amplification efficiency for the Nth cycle be Ay.
That is, Ay is the amplification efficiency that prevails at
amplification cycle N, resulting in the production of
(Sy — Sy_1) sequences, which contribute to the Sy
sequences present at the conclusion of cycle N. For the
0th cycle, 4p =0, so for N =0,

Sy = So(l + o) = Sp. (C.1)
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After the first cycle of amplification, the initial
template sequences are still present and will continue
to be present for all subsequent amplification cycles. The
number of sequences generated by an amplification cycle
depends on the number of sequences present at the
beginning of the cycle and also the amplification
efficiency for the current cycle, here A;. The total
number of sequences present at the end of the first cycle
is thus (N = 1)

S1 =80+ SoAi = So(1 + 4y)

1
= So [T 1+ 2. (C.2)
k=0

The total number of sequences present after two
cycles is dependent on the number of sequences in the
reaction mixture after the first amplification cycle (i.e. at
the beginning of the second amplification cycle), and the
amplification efficiency for the second amplification
cycle 4;, so for N =2
S =81+ 814

=S1(14+ 1) = So(1 + A1 + A»)
= So(1 + 20)(1 + A1 + A)

2
=So [J (1 + 0. (C3)
k=0

Generally, for any N
Sy = Sy_1(1 + Ay)
= Sn_2(1 + Ay_1)(A + Ax)
= Sy3(1+ Av_2)(d + Av—1)(1 + An)
= Sy_k(1 + An—pr )1+ An_gg2) X - -
x (14 Ay_D)( + Ay). (C.4)

At the limit of recursion, kK = N and
Sy = So(1 + A1 + 22) x -+ x (1 + Ay-1)(1 + 4y)

N
= So [T+ ). (C.5)
k=0

Setting Ay = 4 (constant amplification efficiency)
gives

N

Sy =So [J(1 + 4) = So(1 + 1", (C.6)
k=0

which is equivalent to equation (A.4). Setting 1 =1

recovers the equivalent equation from Moore and

Maranas (2000)

Sy =So(1+ 1DV =5,-2V. (C.7)
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