ELSEVIER

Available online at www.sciencedirect.com

*"ScienceDirect

Analytical Biochemistry 356 (2006) 182-193

ANALYTICAL
BIOCHEMISTRY

www.elsevier.com/locate/yabio

Error propagation in relative real-time reverse transcription
polymerase chain reaction quantification models: The balance
between accuracy and precision

Oddmund Nordgard ®*, Jan Terje Kvaloy °°, Ragne Kristin Farmen ®!, Reino Heikkili

* Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway
® Department of Mathematics and Natural Science, University of Stavanger, 4036 Stavanger, Norway
¢ Division of Research and Human Resources, Stavanger University Hospital, 4068 Stavanger, Norway

Received 15 March 2006
Available online 14 July 2006

Abstract

Real-time reverse transcription polymerase chain reaction (RT-PCR) has gained wide popularity as a sensitive and reliable technique
for mRNA quantification. The development of new mathematical models for such quantifications has generally paid little attention to
the aspect of error propagation. In this study we evaluate, both theoretically and experimentally, several recent models for relative real-
time RT-PCR quantification of mRNA with respect to random error accumulation. We present error propagation expressions for the
most common quantification models and discuss the influence of the various components on the total random error. Normalization
against a calibrator sample to improve comparability between different runs is shown to increase the overall random error in our system.
On the other hand, normalization against multiple reference genes, introduced to improve accuracy, does not increase error propagation
compared to normalization against a single reference gene. Finally, we present evidence that sample-specific amplification efficiencies
determined from individual amplification curves primarily increase the random error of real-time RT-PCR quantifications and should
be avoided. Our data emphasize that the gain of accuracy associated with new quantification models should be validated against the

corresponding loss of precision.
Published by Elsevier Inc.
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Real-time reverse transcription polymerase chain reac-
tion (RT-PCR)? is one of the most sensitive and reliable
techniques for mRNA quantification and has achieved
widespread application in gene expression analysis during
the past few years (reviewed in [1-4]). The technique has
two main steps: cDNA synthesis by reverse transcription
of mRNA and subsequent quantification of specific
cDNAs by real-time PCR. Real-time PCR is based on
the real-time monitoring of product formation during the
PCR, allowing quantification in the exponential part of
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the amplification. Amplicon (PCR product) concentration
is measured by fluorescence detection, facilitated by the
binding of fluorescent dyes or fluorescently labeled
sequence-specific probes to the amplicon. Central to real-
time PCR is the threshold cycle, C, (or crossing point,
Cp), which is the number of cycles needed to produce a cer-
tain defined threshold fluorescence. The threshold fluores-
cence may be determined by different computational
strategies or set manually but must be identical for all sam-
ples to be compared within a run. Due to the rather strict
exponential nature of PCR it has been possible to construct
mathematical models which relate the C, value to initial
template concentration [5-7]. The amplification efficiency
of a PCR, here defined as the relative increase in amplicon
concentration per cycle, is an important element in these
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models. The simplest models assume all amplification effi-
ciencies to be equal to 2, whereas more accurate models
use amplicon-specific amplification efficiencies [5,7]. More-
over, several methods to determine amplification efficien-
cies from individual amplification curves have been
proposed [8-18].

There are two main strategies for mRNA quantification
by real-time RT-PCR: absolute and relative quantification
[4]. Absolute quantification is based on standard curves
with known amounts of the target molecule. If, as is usually
the case, the quantifications are to be performed on cDNA
samples from different reverse transcription reactions, this
strategy is vulnerable to differences in RNA quality and
reverse transcription efficiency. In contrast, with relative
quantification the mRNA concentration of interest is
determined relative to one or more reference mRNAs in
the same cDNA sample [4,7]. This strategy, however,
requires stable expression of the reference genes in the sam-
ples that are analyzed. In addition, relative quantification
strategies may involve normalization against a calibrator
sample to improve comparability between multiple experi-
mental runs.

All kinds of measurements are associated with error.
Errors are usually divided into two groups: systematic
and random errors [19]. Systematic errors lead to systemat-
ic deviation from the “‘true” values and can usually be
traced to specific causes. Random errors are due to inher-
ent variations in all aspects of the quantification process
and results in spread of repeated quantifications of the
same sample. Systematic error influences the accuracy of
a measurement, whereas random error causes reduced pre-
cision. When, as in relative RT-PCR quantifications, the
differences between samples rather than the absolute levels
are considered, random errors will be a larger problem
than systematic errors. Random errors in observable quan-
tities are usually estimated by computing the standard devi-
ation, which gives a measure for the spread of repeated
measurements of the same quantity. However, very often
the quantity of interest is determined indirectly by certain
computations based on one or several observables. This
is in fact, the case with real-time PCR quantifications.
From a simple point of view, quantifications are usually
done in replicates and standard deviation for the C, values
may be obtained. However, the quantity of interest is the
initial template concentration, which is a function of the
C, value and not the C, value itself. There are random
errors involved in the different elements of this function,
implying that error propagation may significantly influence
the random error of the final result. We therefore decided
to analyze the propagation of random error associated with
both simple and more advanced mathematical models for
relative real-time RT-PCR quantification of mRNA. Theo-
retical analyses of the different models were tested experi-
mentally. The experimental analyses were performed with
clinical RNA samples that had been collected to validate
a relative real-time RT-PCR assay to detect minimal resid-
ual disease in lymph nodes from operated colorectal cancer

patients. The effects on the overall random error from
introducing calibrator normalization, multiple reference
genes, and sample-specific amplification efficiencies are
presented.

Materials and methods
RNA samples

The RNA sample used in the repeated mRNA quantifi-
cations was produced by pooling 10 ng total RNA from
each of five colon tumors with 5 pg total RNA from each
of 10 normal lymph nodes (50.05 pg in total). The normal
lymph nodes originated from the resection specimens
removed from patients treated for benign colon discases.
The calibrator sample was made by pooling | pg total
RNA from each of five colon tumors with 5 pg total
RNA from each of 9 normal lymph nodes in a similar
way. RNA from clinical samples were chosen to validate
an assay for minimal residual disease in lymph nodes from
colorectal cancer patients. The collecting of clinical sam-
ples was approved by the regional ethical committee.

DNase treatment and reverse transcription

Total RNA (50 pg) was treated by 50 U RQ1 DNase
(Promega) in a total volume of 500 ul 1x First Strand
Synthesis buffer (Invitrogen) containing 500 U RNase-
OUT RNase inhibitor. The reaction mixture was incubat-
ed at 37°C for 30 min and inactivated by adding 10 pl
RQ1 stop solution and incubating 10 min at 65 °C. Com-
plementary DNA was synthesized by M-MLV reverse
transcriptase according to the protocol of the manufactur-
er (Invitrogen). In detail, 100 ul DNase-treated total RNA
(containing 10 pg total RNA) was reverse transcribed in a
total volume of 200 pl, containing 10 pg/pl random non-
amer, 0.5mM dNTP, 10puM dithiothreitol, 2 U/ul
RNaseOUT RNase inhibitor, 10 U/ul M-MLV reverse
transcriptase, and 20 pl 5x FSS buffer (giving a final con-
centration of 1x together with the DNase-treated RNA).
The reactions were subsequently diluted with water to
1000 ul to obtain a final concentration of 10 ng/ul
reverse-transcribed RNA.

Primers

The PCR primers were designed to span exon/exon
boundaries. The sequences were CK20-F: 5'-ACCTCC
CAGAGCCTTGAGAT-3’, CK20-R: 5-TGGCTAAC
TGGCTGCTGTAA-3', MUC2-F: 5'-ACTCCAACATCT
CCGTGTCC-3', MUC2-R: 5-AGCCACACTTGTCTG
CAGTG-3’, BCR-F: 5-GCTCTATGGGTTTCTGAAT

G-3’, BCR-R: 5-AAATACCCAAAGGAATCCAC-3,
HPR-T1-F: 5-TTCCTTGGTCAGGCAGTA-3’, and
HPRTI-R: 5-TATCCAACACTTCGTGGG-3'. The

amplicon sizes were 106, 111, 99, and 81 bp for CK?20,
MUC2, BCR, and HPRT]I, respectively.
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Real-time PCR set up

PCR amplifications were performed with the qPCR
SYBR Green Core kit from Eurogentec according to the
manufacturer’s recommendations. Twenty nanograms of
reverse transcribed RNA was amplified in a total volume
of 25ul 1x reaction buffer containing 0.2 mM dNTP,
0.15 uM primers, 0.75 ul 1:200 diluted SYBR Green in
dimethyl sulfoxide, and 2.5, 1.5, 2, and 2 mM MgCl, for
the CK20, MUC2, BCR, and HPRT]1 reactions, respective-
ly. All components except the template were added to 96-
well PCR plates as mastermixes. The amplifications were
performed in an Mx3000P (Stratagene) real-time PCR
instrument, incubating 10 min at 94 °C and then 40 cycles
of 20 s at 94 °C and 30 s at 60 °C. Subsequently, the reac-
tion products were analyzed by melting curves. All melting
curves revealed well-defined peaks with the expected melt-
ing temperatures, confirming the specificity of the primers
at the reaction conditions. Amplicon identities were also
confirmed by sequencing. Mean cycle threshold values were
28.58, 28.29, 20.66, and 22.57 in the unknown sample and
21.68, 19.62, 20.63, and 22.47 in the calibrator sample for
the CK20, MUC2, BCR, and HPRT1 amplifications,
respectively. Amplification curves and dissociation curves
from a randomly selected experiment are available as sup-
plemental material on the journal website (S1). A three-
point smoothing algorithm was applied to all amplification
curves except those used for determination of amplification
efficiencies for individual amplification curves. Reaction
setup, template addition, and thermocycling were per-
formed in three separate areas of the lab. No-template con-
trols were included in every run to monitor potential
contamination.

Amplicon-specific amplification efficiencies were deter-
mined by the standard curve method performed on four
different samples in three replicated experiments. Each of
the target gene standard curves consisted of a six-point
fourfold dilution series analyzed in duplicates, whereas
the reference gene standard curves consisted of five-point
fourfold dilution series analyzed in duplicates (mean R>
for all 48 standard curves was 0.996). Mean amplification
efficiencies for the CK20, MUC2, BCR, and HPRTI
amplicons were 1.96 + 0.03, 1.99 +0.02, 2.03 + 0.03, and
2.03 + 0.03, respectively.

Mathematical models for relative real-time RT-PCR
quantification

The exponential phase of a PCR can be described by the
following equation:

T=T,-ES, (1)

where T is the number of target molecules after C cycles of
PCR, T is the initial number of target molecules, and E7is
the amplification efficiency of the target amplicon. The
fluorescent DNA-binding dye or probe that is added to
the reactions allows PCR product concentration to be

measured by fluorescence detection. The threshold cycle,
C, (or crossing point, Cp, in LightCycler terminology), is
the number of cycles needed to produce a certain defined
threshold fluorescence. The number of target molecules
producing the threshold fluorescence (7c,) is then given by

Te, = To- ES'. 2)

Relative quantification in its simplest form expresses the
relative amount of target mRNA as the ratio r; between
the initial number of target molecules, T, and the initial
number of reference mRNA molecules, denoted R, below.
From Eq. (2) it can be shown that [5,10]
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In the same experiment 7T¢,, and Rc,, are constants. Thus,
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ry = & =k- E']_-—C7 (4)
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where k is a constant that is not necessarily equal to 1. The
value of k depends on several factors, such as the type of
chemistry used, the sizes of the PCR products, the sequence
of the PCR products, and the setting of the fluorescence
threshold [5]. Thus, it is not strictly correct to assume that
k is constant in multiple runs of the same assay. The con-
stant k& can be eliminated by normalization against a cali-
brator sample. The calibrator could be a reference sample
that is included in all runs, an untreated control, or a ran-
domly chosen sample, depending on the experimental set-
up. The relative expression level r, of the target gene in
the sample relative to the calibrator sample is then given
by [5,7]
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Livak and Schmittgen [5] simplified this expression by
assuming that the amplification efficiencies of both ampli-
cons were equal to 2, an assumption that has to be validated.
This gives the following expression (the 2**“" method [5])

=280, ™

where AAC, = C, rcal — C, 7+ C, g — C; Rcal- The amplifi-
cation efficiency was expressed as E =2 instead of
E — 1~ 1 in the present paper to simplify the expressions
(as in [7,13]).

Error propagation
If the quantity of interest y is a function of n observables

X1, X2, .. .,X,, it can be shown that the standard deviation of
y is approximated by
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Byy

(1))

(8)
where var(x;) is the variance of the observable x;,
cov(x;,x;) is the covariance between x; and x;, and f—xyk
is the partial derivative of y with regard to X
[19,20]. If the observables are uncorrelated, the covari-
ance terms can be omitted [19]. Eq. (8) is also known
as the error propagation formula. We used this equa-
tion to calculate error propagation expressions for the

various mathematical models of relative real-time
RT-PCR quantification.

Sd@_@((&) ) 3285 (2.2

i=2

Computations

Cycle threshold values and raw fluorescence data were
exported from the Mx3000P software (Stratagene) via
Microsoft Excel to simple text files and imported into the
R software package (http://www.r-project.org). All subse-
quent computations except the LinRegPCR regressions
were performed with the R software package. The R func-
tions implementing the Tichopad and Liu/Saint algorithms
are available as supplemental material on the journal web-
site (S2 and S3).

The intrarun variation in amplification efficiency was
compared with the interrun variation by one-way analysis
of variance (ANOVA). The distributions of the amplifica-
tion efficiencies were judged to be near normal by visual
inspection of QQ plots.

Results
Estimation of propagated error in real-time PCR

The random error observed in real-time reverse tran-
scription PCR originates from both the reverse transcrip-
tion step and the PCR amplification step [21]. We wanted
to analyze the propagation of error associated with the var-
ious mathematical models of relative real-time PCR quan-
tification and therefore focused on the PCR step. Assuming
that the amplification efficiencies of both the target ampli-
con and the reference amplicon are equal to 2 in Eq. (4)
(Materials and methods), we obtained the simplest expres-
sion for relative RT-PCR quantification (here denoted the
24¢ method),
ry= D0 g p(Ccir), 9)

Ry
where k is a constant, Ty is the initial amount of target
transcript, R, is the initial amount of reference transcript,
and C, g and C, 7 are the C, values corresponding to the
reference and target transcript amplifications, respectively.
We applied the error propagation formula (Eq. (8)) to
obtain an expression for the propagated error associated
with r4:

_ Ory 2 ) ory 2 ) ory ory
sd(ry) = \/(ECLR> var(C,g) + <5Cy_r var(C,r) +2 5c.) \5c., cov(C,r,Cir),

(10)

sd(ry) = \/ (In2 - r)*var(C,z) + (—In2 - ra)*var(C,z) + 2(In2 - r4) (=2 - r4)cov(C, 7, Ci),

(11)

sd(ry)

ry

= In2\/var(C,r) + var(C,r) — 2cov(C, 1, C;r).

(12)

Thus, the relative standard deviation (coefficient of vari-
ation) of the relative expression level given by Eq. (9)
can be directly estimated from the variances and covari-
ances of the C, values. From this expression it is evident
that reference genes with high reproducibility are prefer-
able with regard to the overall precision of the
quantitation.

Although quantification experiments may be per-
formed as single-run assays, multirun quantifications
are required in most clinical studies. The error propaga-
tion expression in Eq. (12) can be applied to both intra-
and interrun error analyses. When considering intraassay
variation in singleplex assays (quantitating only one
transcript per reaction), there is obviously no correlation
between the C, values of the target and the reference
genes and the covariance term can be omitted. When
employing multiplex assays (quantitating both target
and reference transcripts in the same reaction) or when
considering any interassay variation, however, the
covariance has to be checked. Thus, we quantitated
two target mRNAs and two reference mRNAs in dupli-
cates from the same cDNA sample in 10 successive runs
with a singleplex real-time PCR assay. To minimize the
correlation of the C, values, the same fluorescence
threshold was used in all runs. Plotting the C, values
for the different mRNAs against each other and comput-
ing the covariances showed that the C, values of the dif-
ferent transcripts were all correlated across the runs
(Fig. 1 and Table 1). The covariances were of similar
magnitude as the variances, implying that covariance
had to be accounted for in interassay error estimates.
However, Eq. (12) shows that the covariance term actu-
ally has a negative sign and thus a positive covariance
does not increase the overall random error of the quan-
tification. We compared error propagation estimates
obtained by Eq. (12) with the coefficient of variation
(CV) of r4 (Eq. (9)) computed for each of the 10 exper-
iments described above and found good agreement
(Table 2).

Calibrator normalization and error propagation

To use the expression in Eq. (9) for multirun quanti-
fications, one must assume that & is constant through-
out the runs, an assumption that has to be validated.
To eliminate this constant, normalization against a cal-
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Fig. 1. Correlation plot showing C, values for the CK20, MUC2, BCR,
and HPRTI transcripts determined in duplicates of the same sample in ten
repeated experiments. Each subplot shows the C, values of two transcripts
plotted against each other. The C, values of CK20, MUC2, BCR, and
HPRT1 are plotted on the x axis of the plots in the first, second, third, and
fourth columns of subplots, respectively, as indicated on the diagonal.
Similarly, the C, values of CK20, MUC2, BCR, and HPRT]1 are plotted
on the y axis of the plots in the first, second, third, and fourth rows of
subplots, respectively. Each point represents the mean of the two
duplicates quantitated in a single run.

Table 1

Covariances of the C, values for different transcripts

Transcript CK20 MUC2 BCR HPRTI1

CK20 0.068* 0.054 0.053 0.052

MUC2 0.054 0.051% 0.042 0.042

BCR 0.053 0.042 0.045* 0.044

HPRTI1 0.052 0.042 0.044 0.053%
4 Variance.

Table 2

Coefficients of variation (%) for the quantification of CK20 and MUC2
mRNA

Reference® CK20

MUC2

Computational® Experimental Computational® Experimental

BCR 5.9 5.9 7.9 7.8
HPRT1 9.0 9.2 9.8 10.1

* Target mRNA concentrations were normalized against reference
mRNA concentrations.
® Estimated by the error propagation formula.

ibrator sample has been introduced as given in Eqgs. (6)
and (7) (Materials and methods). From Eq. (8) it can
be shown that the relative standard deviation (=CV)

of ry in Eq. (7) (the 2% method) can be estimated
by
sd(rs)

3

= ln2\/var(C,_r) + var(Cyzcu) + var(C,g) + var(Cx, cal) + COVy,

(13)
where COV; = — 2cov(C, 1,C, 1ca)) — 2¢oV(C, 1,C, g) + 2cov
(CI,Ty Ct,R,cal) + 2COV( Ct,T,cal: CI,R) - 2COV( Ct,T,cal: Ct,R,cal) -
2cov(C; r,Cy real)- From this expression it is evident that
the random error of the calibrator C, values and the ran-
dom error of the sample C, values contribute similarly to
the overall error. Thus, a calibrator sample with minimal
variance should be chosen. This can be achieved by using
a sample with high concentrations of the transcripts of
interest as calibrator, since the precision of real-time
PCR is usually better for higher target concentrations
[1,22]. With this theoretical background, we tested in our
experimental system the magnitude of the loss of precision
resulting from the normalization against a calibrator. This
was compared to the potential error introduced by assum-
ing that the constant & in Eq. (9) is constant in multiple
runs of the same experiment. Duplicate quantifications of
the target transcripts of interest and the two reference tran-
scripts in aliquots of the same sample and a calibrator sam-
ple were performed in 10 separate experiments. The
variances of the C, values of the sample and the calibrator
were of similar magnitude (results not shown). Error esti-
mation by Egs. (12) and (13) indicated that the random er-
ror in the relative quantifications would be substantially
higher with calibrator normalization than without, given
a constant k (results not shown). We computed the relative
concentration of each transcript of interest against each of
the two reference transcripts for the 10 experiments with
the 2°“ (Eq. (9)) and 2**“ methods (Eq. (7)) and deter-

12
|

10

Coefficient of variation (%)

CK20/
BCR

CK20/
HPRT1

MucC2/
BCR

MucC2/
HPRT1

Fig. 2. Coefficients of variation (%) in repeated relative quantifications
determined by the 22 method (black bars) versus the 2 method (gray
bars). The two target mRNA concentrations (CK20 and MUC2) were
computed relative to the two reference mRNAs (BCR and HPRTI).
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mined the CVs. As can be seen in Fig. 2, the CVs were con-
sistently larger for the 2 method. This indicated that the
constant & must have been fairly stable across the runs in
this experimental system, eliminating the need for a calibra-
tor. Other experimental systems may perform differently,
emphasizing the necessity of validation before omitting
the calibrator normalization.

Multiple reference genes and error propagation

There is considerable evidence that no perfect universal
reference gene for relative quantification of gene expression
exists [23-28]. The expression stability of candidate refer-
ence genes must be validated in the relevant experimental
system. To minimize the error due to variations in reference
gene expression level, normalization against the geometric
mean of multiple reference transcript concentrations has
been proposed [24]. We augmented the Pfaffl model [7] to
include two reference genes according to this proposition
and evaluated the corresponding propagation of error.
First, the augmented model for relative quantification with
two reference transcripts was established,

Cr.1.cal —Ct,1
o=t , (14)
\/Egi.kl.culfcr.m _ngikz.cal*cr.kz

where R1 and R2 represented the two reference transcripts,
respectively. We then applied Eq. (8) and developed the er-
ror propagation expression for this model,

d

> V(V“) — V7 + Vi + Vo £ COV,, (15)
4

where V= (logE7)* - (var(C, reca) + var(C.p)), Vil =

(0.5-logEg1)* - (var(Cy rical) T Var(Cogi))s  Vra=(0.5-

log Ego)” - (var(C; racal) T var(C; g2)), and COV, repre-
sents the covariance terms, which are left unexpanded
due to their length. Eq. (15) indicates that the addition of
an extra reference gene does not increase the overall ran-
dom error of the quantification (notice the 0.5% terms). If
there is no covariance and equal amplification efficiencies
and variances for all transcripts are assumed, it can be
shown that the estimated CV when normalizing against
two reference transcripts is only 87% (‘/75) of the CV when
normalizing against a single reference transcript. This was
confirmed by simulation, selecting random C, values from
the same normal distribution (results not shown). Howev-
er, in real experiments the covariance complicates the com-
putations. We applied the model in Eq. (14) to our data for
the two target amplicons CK20 and MUC2 in the 10
repeated quantifications described above and computed
the CV for the relative quantifications with two reference
transcripts (Fig. 3). We compared the precision of this
quantification with those of the single reference gene cases
and concluded that normalization against an additional
reference gene did not increase the overall random error.
Rather, the CVs of the two-reference gene quantifications
were found to be equal to or somewhat lower than the

15

10

Coefficient of variation (%)

CK20 MUC2

Fig. 3. Coeflicient of variation (%) for the relative quantification of CK20
and MUC2 mRNA versus single or multiple reference genes. Black bars
show the results for BCR alone as a reference gene, gray bars show the
results for HPRT1 alone, and white bars show the results when using the
geometric mean of both reference genes as a normalization factor.

mean of the CVs for each single-reference gene quantifica-
tion (10.0% versus 10.7% and 12.2% versus 12.8%). Thus,
error propagation does not seem to be an argument against
multiple reference gene normalization, neither theoretically
nor experimentally, in our system. However, it is preferable
that the reproducibilities of all the reference genes are
good, since the least reproducible reference gene will have
considerable impact upon the overall random error. With
respect to error propagation, a single very reproducible ref-
erence transcript may perform better alone than in combi-
nation with a reference transcript assay that has poor
reproducibility. The reproducibility of reference transcript
quantification can be optimized by choosing reference
genes with high expression levels, since the reproducibility
of real-time RT-PCR is usually better at higher target con-
centrations [1,22].

Amplification efficiency and error propagation

Amplification efficiencies of specific amplicons have typ-
ically been determined by the generation of dilution curves
and the plotting of the C, values against the logarithm of
the initial concentration (the standard curve method) [6].
Using specific amplification efficiencies for each amplicon
instead of the ideal value 2 obviously results in more cor-
rect quantifications [7]. There is, however, evidence that
the amplification efficiency of the same amplicon varies
from sample to sample, due to small amounts of different
PCR inhibitors [15,17,29,30]. To correct for this variation,
several methods for the determination of amplification effi-
ciency from individual amplification curves have been
developed. Some researchers have reported algorithms that
are based on regression of the exponential part of the
amplification curve [8,10,12-16]. Other strategies involve
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four-parametric sigmoidal fit of the entire amplification
curve [9,11,17,18,31].

We determined the amplification efficiencies from indi-
vidual amplification curves by applying three of the
referred algorithms to the 10 quantifications of the same
sample already described. In detail, this included the Lin-
RegPCR program made by Ramakers et al. [12], the expo-
nential fit algorithm of Tichopad and co-workers [16] (here
denoted the Tichopad method), and the four-parametric
sigmoidal fit algorithm of Liu and Saint [9] (Liu/Saint
method). Mean amplification efficiencies are shown in
Fig. 4. The three methods produced quite different results,
indicating that at least two of the methods gave poor esti-
mates of the true amplification efficiency. Consistently, the
Tichopad method gave lower amplification efficiency than
the LinRegPCR program, whereas the precision seemed
to be better for the sigmoidal-fit method of Liu and Saint
than for the two other methods. Nevertheless, there was
considerable variation in the determined amplification effi-
ciencies of the runs. We asked whether this variation
reflected a true variation in amplification efficiency of the
reactions or whether it could be due to random error intro-
duced by the method of determination. There was no cor-
relation between the methods (results not shown),
suggesting that the efficiency variation did not reflect a true
interassay efficiency variation. Considering that the preci-
sion of the pipetting of template is very high compared
with the total variability of the quantifications (the pipette
performance information from the manufacturer states
that the precision of the pipette under optimal usage is
0.7% (CV)), we assumed that the addition of template
(7o) in each duplicate was constant. In the same run, the
amount of a specific PCR product at fluorescence threshold
(7) is also constant. Thus, the following expression should

1.5 2.0

Amplification efficiency
1.0

0.5

0.0

CK20 MUC2 BCR

Fig. 4. Mean amplification efficiencies of the CK20, MUC2, BCR, and
HPRTI! amplicons in aliquots of the same sample determined from
individual amplification curves by the LinRegPCR (dark gray bars),
Tichopad (light gray bars), and Liu/Saint (white bars) algorithms.
Standard deviations are shown by error bars.

HPRT1

be constant for each duplicate in each run (derived from
Eq. (1)):
z — ECz
To T
We computed ES' for each reaction in the 10 duplicates de-
scribed above with amplification efficiencies determined by
the LinRegPCR, Tichopad, and Liu/Saint algorithms. We
estimated the random error of the three methods by com-
puting the CV for each duplicate. For comparison, similar
computations were done with constant amplification effi-
ciency determined previously by the standard curve meth-
od. Mean CVs for the four studied transcripts are shown
in Fig. 5. The variability of ES' was much higher when
using amplification efficiencies for each reaction instead
of a constant previously determined efficiency, indicating
that the variations in the individually determined amplifi-
cation efficiencies represent primarily random error of the
determination and not a real variation. The variation in
ES! was significantly higher than the expected pipetting var-
iation, confirming the validity of our assumption that 7 is
constant in this system. Moreover, the precision of these
quantifications differed substantially for the three methods.
We observed an increasing precision in the following order:
LinRegPCR, Tichopad and Liu/Saint. We also performed
one-way ANOVA to test the null hypothesis that there is
no difference in amplification efficiency in the runs. As
expected, we were not able to reject the null hypothesis
for any of the methods or amplicons (p > 0.15).

Having characterized the interassay variation of the
reaction-specific amplification efficiencies as primarily ran-
dom error of the estimations, we proceeded to investigate
the consequence of using these amplification efficiencies
in the relative quantification models. We determined the

(16)

100 120
| J

80
|

40

Mean coefficient of variation (%)
20 60
|

.JI]

CK20 MuC2 BCR HPRT1

Fig. 5. Variability of E when using amplification efficiencies determined
for each reaction by the LinRegPCR (black bars), the Tichopad (dark
gray bars), and the Liu/Saint (light gray bars) algorithms or kept constant
(white bars). Mean coefficients of variation (%) of ES* were computed for
each of 10 duplicates and averaged.
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relative amounts of CK20 and MUC?2 versus both BCR
and HPRTI in each of the 10 replicated duplicates of the
same sample by the simple expression in Eq. (4) (without
calibrator normalization) and by the Pfaffl model in
Eq. (6) (with calibrator normalization). The amplification
efficiencies were estimated from individual amplification
curves using the three algorithms described above and
compared with a constant predetermined amplification effi-
ciency. Fig. 6 shows the CV (%) for the two quantification
models. The reproducibility was consistently better when
using a constant amplification efficiency compared to that
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Fig. 6. Coeflicients of variation (%) of relative real-time RT-PCR
quantification when using amplification efficiencies determined for indi-
vidual amplification curves. (A) Relative amounts of the target transcripts
were determined according to the model in Eq. (4) (without calibrator
normalization). (B) Relative amounts of the target transcripts were
determined according to the Pfaffl model in Eq. (6) (with calibrator
normalization). Amplification efficiencies were determined by the Lin-
RegPCR (black bars), the Tichopad (dark gray bars), and the Liu/Saint
(light gray bars) algorithms or kept constant (white bars). Mean
amplification efficiencies for each duplicate were used in the computations.

when using the sample-specific amplification efficiencies.
The extremely high CVs (up to 250%) reflect the exponen-
tial nature of the PCR quantification models. Errors in the
base number (amplification efficiency) are more severe than
errors in the exponent (threshold cycle).

We applied the error propagation formula (Eq. (8)) to
the quantification models in Egs. (4) and (6), treating the
amplification efficiencies as observables. The resulting
expressions are available at the journal website as supple-
mental material (S4). Amplification efficiencies are strictly
speaking not an observable in this setting but are derived
from raw fluorescence data by regression. Thus, their var-
iability may be estimated from the regression parameters
as described for linear regression by Marino et al. [13].
However, to avoid unnecessary complexity, we treated
amplification efficiencies as observables with variances
derived from replicated quantifications of the same sample.
The referred error propagation expressions (supplemental
material) indicated that the contribution of the amplifica-
tion efficiency error to the overall random error should
be less when applying calibrator normalization. However,
for most combinations of target and reference transcripts
we did not observe any error reduction when normalizing
against a calibrator (Fig. 6A versus Fig. 6B), possibly
due to a considerable countereffect from the addition of
the new observables associated with the calibrator.

Discussion

Along with the development of instruments and chemis-
tries for real-time PCR, computational models of varying
complexity have emerged, generally with the intention to
reduce systematic errors. However, the development of
new models for relative real-time RT-PCR quantification
has generally paid little attention to the aspect of random
error and error propagation. We have applied the princi-
ples of error propagation to the most established mathe-
matical models for real-time RT-PCR quantification and
have evaluated, both theoretically and experimentally, the
contribution of various model elements to the overall ran-
dom error. Calibrator normalization was shown to increase
the overall random error of the quantifications in our sys-
tem, emphasizing that the requirement for a calibrator
should be evaluated for each experimental setup. In con-
trast, we found that normalization against the geometric
mean of two reference transcript concentrations compared
to a single reference transcript may indeed be preferable, as
it did not increase the overall random error of the quanti-
fications. Finally, we explored different approaches to
determine sample-specific amplification efficiencies from
individual amplification curves and presented evidence that
the efficiency variations observed for the same sample
represent primarily random error of the efficiency determi-
nation. Incorporation of sample-specific amplification effi-
ciencies in the relative quantification models was shown to
severely reduce the overall reproducibility of the quantifica-
tions in our system. Our results emphasize that the gain of
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accuracy associated with augmentation of quantification
models must be validated against the corresponding loss
of precision.

Quantification of mRNA by real-time RT-PCR consists
of two experimental parts: the reverse transcription of
RNA and the amplification and quantification of cDNA
by PCR. Stahlberg et al. [21] reported that in their system
of absolute quantification the random error was larger in
the reverse transcription step than in the PCR step. This
problem is partly circumvented when performing relative
quantification with reference genes, as in our setup. Never-
theless, random errors in the reverse transcription step, if
differently affecting the transcription efficiency of the target
genes and reference genes, would add to the errors dis-
cussed in this paper. The presented study focused on the
effects of error propagation introduced by different quanti-
fication models in the PCR step only.

When comparing multiple quantifications of the same
sample in separate experiments, we observed that the C,
values of different amplicons were correlated (Fig. 1 and
Table 1). Thus, the covariance terms of the error propaga-
tion expressions could not be omitted. The correlation of
C, values between experimental runs was expected, since
they depend heavily on the threshold fluorescence, which
usually varies from run to run. Even though the fluores-
cence thresholds were set to a predefined value in all runs,
we observed some correlation. This was probably due to
the fact that the relationship between fluorescence and
PCR product concentration varied from experiment to
experiment. The same explanation lies behind the interas-
say variation of the constant k£ in Eq. (4) (Materials and
methods) [5]. Furthermore, there is preliminary evidence
that the C, values of different transcripts quantitated in
the same sample by multiplex PCRs are correlated even
within the same experiment (unpublished observations).
This indicates that at least in some multiplex assays covari-
ances have to be included in both inter- and intraassay
error propagation estimations.

Relative quantification of a specific mRNA can be
defined as the amount of that mRNA relative to the
amount of one or more reference mRNAs [4,7]. However,
several groups use a different definition of relative quantifi-
cation, defining the term as the amount of a specific mRNA
in a sample relative to the amount of that mRNA in a con-
trol or calibrator sample [1,5]. The most common mathe-
matical models for “relative” quantification include both
levels of normalization, allowing both definitions to persist
side by side. Calibrator normalization is expected to
increase the accuracy and reproducibility of multirun
experiments, allowing for better comparability between
experiments. This is connected to the constant £ in Eq.
(4), which can vary from run to run [5]. In our system, how-
ever, calibrator normalization was shown to increase the
overall random error of the quantification (Fig. 2). This
indicated that the error caused by assuming that k is con-
stant across the runs was smaller than the error increase
caused by the calibrator. In our experimental system it thus

seemed preferable to omit the calibrator normalization.
However, in other experimental systems the calibrator
may be more beneficial. In our experience, experimental
changes such as new batches of primers can cause system-
atic changes in the C, values measured for the same sample
(unpublished observations). Likewise, Bustin et al. [3] has
observed that different batches of TagMan probes perform
differently in quantification experiments. We suggest that
the requirement for a calibrator should be validated in each
experimental system. When calibrator normalization does
not increase the overall interrun reproducibility of the
quantification, we suggest using the calibrator to monitor
the stability of the system rather than as a normalizer.

In the absence of perfect universal reference genes,
Vandesompele et al. [24] proposed to normalize against
the geometric mean of multiple reference genes. They argue
that the geometric mean controls better for outlying values
and abundance differences between the different reference
genes. Averaging reference transcript concentrations is a
challenging task, considering that the expression levels of
different reference genes may vary over several orders of
magnitude. The arithmetic mean would be more sensitive
to changes in the levels of the most abundantly expressed
reference genes than to changes in those with lower expres-
sion levels. Moreover, the arithmetic mean would give
more complicated error propagation expressions. With
the arithmetic mean in the denominator of Eq. (14) it is
not possible to factorize out r4 from the square root, as
done in Eq. (15). Furthermore, the variance of the most
abundant reference transcript will have greater impact on
the overall error than that of the less abundant reference
transcripts.

The analytical strength of real-time PCR lies in its wide
dynamic range of quantitation, which may span up to sev-
en orders of magnitude [22]. The reproducibility, however,
may be less magnificent, especially at low concentrations.
At very low concentrations (C, > 30), there will be sam-
pling error due to the stochastic movements of the few tar-
get molecules in the available volume (Poisson statistics)
[21,22,32]. Furthermore, the exponential nature of PCR
allows minor variations in reaction conditions and mis-
priming events in the early stages to be amplified through-
out the process [2].

The amplification efficiency is usually lower than the
maximal 2 and is not constant throughout the PCR. It
has been suggested that the amplification efficiency is some-
what lower for the very first cycles due to the length of the
original template and the first copies compared to the final
PCR product [33]. Subsequently, the amplification efficien-
cy stays reasonably constant until the depletion of reagents
and accumulation of product inhibits the reaction, causing
the efficiency to decrease toward zero. In addition, the
amplification efficiencies of different amplicons are not nec-
essarily identical but depend upon the length and sequence
of the amplicons [34]. Thus, the use of specific amplifica-
tion efficiencies for each amplicon seems highly adequate
[7]. Moreover, evidence that the amplification efficiency
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for each amplicon varies from sample to sample due to the
presence of small amounts of PCR inhibitors from pre-
PCR steps has been presented [15,17,29,30]. To correct
for this apparent variation several strategies to determine
amplification efficiencies from individual amplification
curves have been proposed. The simplest approach is to
perform linear regression on log-transformed data from
the exponential part of the amplification curve [8,12-14].
The exponential part has been identified both manually
and by various automatic or semiautomatic algorithms.
Moreover, nonlinear regression of the exponential part of
the amplification curve to an exponential function has been
suggested [10,15,16]. Both these approaches focus exclu-
sively on the exponential part of the amplification curve
for the estimation of amplification efficiency. Contrary to
this, others have proposed performing nonlinear regression
of the entire amplification curve to a four-parametric sig-
moidal model [9,11,17,18,31].

We tested three of the proposed strategies for determi-
nation of sample-specific amplification efficiencies, includ-
ing the four-parametric sigmoidal-fit method of Liu and
Saint, and obtained evidence that these determinations
were imprecise (Figs. 4 and 5). The amplification efficiency
variation of the same amplicon observed in different runs
of the same sample seemed to reflect primarily random
error of the determination and not a real variation. This
is intriguing, considering the great interest that these ideas
have engendered. However, our results are not entirely
without support in the literature. Gentle et al. [8] used lin-
ear regression of the log-transformed exponential part of
the amplification curve to determine sample-specific ampli-
fication efficiencies. However, they observed no significant
difference in amplification efficiency in the samples and
thus used a mean amplification efficiency in their quantifi-
cations. Peirson and co-workers [14] also used linear
regression of log-transformed data from the exponential
phase for amplification efficiency determination. They
found no significant differences in amplification efficiency
in different samples (ANOVA) and concluded that applica-
tion of sample-specific amplification efficiencies appears
unjustified. On the other hand, Tichopad and colleagues
compared their exponential fit algorithm with the standard
curve method (constant amplification efficiency for all
quantifications of the same transcript) and the four-para-
metric-sigmoidal-fit algorithm of Liu and Saint. They
showed that their algorithm was more precise than both
the standard curve method and the Liu/Saint algorithm
when computing an expression similar to Eq. (16) for a
dilution series of the same sample. When we applied these
methods on one of our standard curves, the standard curve
method performed better than the other methods (CV% of
6.8%), contrary to Tichopad’s results. We evaluated several
standard curves and found that the performance in this kind
of test depended upon the quality of the standard curve
(results not shown). When there were substantial deviations
from linearity, the standard curve method was less precise.
This emphasizes the importance of validating that the real-

time quantifications are in the linear range of the assay, at
least when relying on the standard curve method for ampli-
fication efficiency determination. However, we cannot
exclude that there might be instrument-dependent differenc-
es between the experiments, as Tichopad et al. performed
their studies on a LightCycler (Roche) and we conducted
ours on an Mx3000P instrument (Stratagene).

Bar and colleagues [15] determined sample-specific
amplification efficiencies by fitting three to five points from
the exponential part of the amplification curve to an expo-
nential function. Optimizing the threshold defining the
start of the exponential phase and the number of points
used for regression, they achieved amplification efficiencies
with rather low standard deviations when using purified
PCR product as template. However, even if they applied
their kinetic outlier detection algorithm to exclude samples
with deviating amplification efficiencies they experienced
considerable variation in relative quantifications of mRNA
(mean CV% presented was 31%). In light of our results, it
could even be questioned whether the kinetic outliers
excluded were true outliers of the quantitation and not just
the results of imprecise determination of amplification effi-
ciency. It would have been interesting to compare the C,
values of their outliers with those of the nonoutliers.

Common to the linear and exponential fit-based meth-
ods are the dependence on rather few data points to deter-
mine the amplification efficiency. Often, only three to five
points have been included in the regression analyses. Deter-
mination of two or three regression parameters from only
three to five data points, fluorescence measurement noise
taken into account, is in our opinion prone to be imprecise.
It is not without reason that real-time data processing soft-
ware often applies smoothing algorithms. Moreover, the
data may not fit perfectly to the mathematical model
applied for regression analysis, increasing the error of the
parameter estimations. Bar et al. [15] report that their
amplification efficiency determinations were sensitive to
the selection of data points to be included in the regression
analyses, confirming our reasoning. On the other hand, the
signal/noise ratio of the fluorescence measurements may be
different for other experimental setups. Thus, the random
error of amplification efficiency determinations may vary
for different instruments and detection chemistries.

The dependence on few data points is not a shortcoming
of the four-parametric sigmoidal fit algorithm. Despite this,
both our group and Tichopad et al. [17] experienced low
precisions when using amplification efficiencies determined
by this method in quantifications. However, the four-para-
metric sigmoidal model also allows quantification by com-
putation of the initial fluorescence after background
subtraction. Rutledge [18] presents evidence that this quan-
tification strategy produces data with high reproducibility.
In our hands, using cDNA as template, this strategy (imple-
mented as in [9]) was very sensitive to the background sub-
traction and produced less precise quantifications (results
not shown). Moreover, the conversion from initial fluores-
cence to template concentration is not straightforward and
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depends upon the relationship between fluorescence and
PCR product amount. It is also unclear to us how the back-
ground phase of amplification curves can contain informa-
tion about the initial amount of template, especially when
using randomly primed cDNA as template.

With respect to the presented evidence on imprecise
determination of amplification efficiencies from individual
amplification curves, we suggest that the standard curve
method should still be used for determination of amplifica-
tion efficiencies. However, the standard curve method also
suffers from random error. Thus, amplicon-specific efficien-
cies should be determined from multiple standard curves
with several replicates of each dilution to minimize the ran-
dom error of the determination.

Although becoming a standard technique for mRNA
quantification, the data processing framework of real-time
RT-PCR is still in development. We emphasize the
importance of validating new mathematical quantification
models in view of error propagation. Increasing the com-
plexity of the models also has the potential to reduce repro-
ducibility, as we have shown herein. Gain of accuracy
associated with the development of new models must be
balanced against the possible loss of precision.
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