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Statistical practice in high-throughput 
screening data analysis
Nathalie Malo1,2, James A Hanley2, Sonia Cerquozzi1, Jerry Pelletier3 & Robert Nadon1,4

High-throughput screening is an early critical step in drug discovery. Its aim is to screen a large number of diverse chemical 
compounds to identify candidate ‘hits’ rapidly and accurately. Few statistical tools are currently available, however, to detect 
quality hits with a high degree of confidence. We examine statistical aspects of data preprocessing and hit identification for 
primary screens. We focus on concerns related to positional effects of wells within plates, choice of hit threshold and the 
importance of minimizing false-positive and false-negative rates. We argue that replicate measurements are needed to verify 
assumptions of current methods and to suggest data analysis strategies when assumptions are not met. The integration of 
replicates with robust statistical methods in primary screens will facilitate the discovery of reliable hits, ultimately improving the 
sensitivity and specificity of the screening process.

High-throughput screening (HTS) is the backbone of drug discov-
ery within the pharmaceutical industry. Over the past decade it has 
also made its way into academic settings. The combination of robotic 
methods, parallel processing and miniaturization of biological assays 
has dramatically increased throughput. The potential to increase the 
hit discovery rate has been offset, however, by increased research costs. 
Despite the current popularity of HTS and major improvements in
processing, the new drug approval rate has declined significantly1.

Developers are attempting to counter this inefficiency by various 
means, including developing biotech-pharmaceutical alliances and 
changing their internal organizational structures by merging multiple 
disciplines associated with lead generation and validation2. Likewise, 
HTS programs are being integrated within academic settings where 
alternative targets and diseases of lesser commercial value can be 
explored3. At the root, the challenge is to find the next marketable drug 
while simultaneously maximizing the number of screened targets and 
compounds, minimizing costs per well and optimizing the lead genera-
tion and validation process.

Two kinds of inference or decision error can occur at the primary 
screen step: ‘false positives’ and ‘false negatives’—it is unclear if cur-
rent inefficiencies are due mostly to the generation of too many false 
positives, too many false negatives or both. We advance the view that 
improving hit specificity and sensitivity cannot be met by technological 
and organizational improvements alone and that improvements in data 
analysis methods are needed to fulfill the promise of HTS.

HTS is a large-scale process (Fig. 1) that screens many thousands 
of chemical compounds in order to identify potential lead candidates 
rapidly and accurately. Whereas the plating format and number of 
compounds per plate can vary, typically just a single measurement of 
each compound’s activity is obtained in an initial primary screen. The 
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Figure 1  From HTS process to eventual drug development.

R E V I E W
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



168 VOLUME 24   NUMBER 2   FEBRUARY 2006   NATURE BIOTECHNOLOGY

automated process allows the testing of several hundred plates over a 
period of weeks. Compounds identified for follow-up (labeled ‘hits’) 
are evaluated for biological relevance by a counter screen and confirmed 
as bona fide hits by a secondary screen.

Secondary screens test many fewer compounds (e.g., the 1% most 
active compounds from the primary screen4) and typically use at least 
duplicate measurements. Paradoxically, compounds with the highest mea-
sured activity levels on a primary screen will on average be less extreme 

on a secondary screen because of a statistical artifact known as ‘regression 
toward the mean’5,6. Accordingly, marginal hits on the first run may fail to 
validate on the second run merely because of random measurement error, 
although the size of the statistical artifact can be minimized by improv-
ing measurement precision (e.g., by obtaining replicate measurements). 
Confirmed hits with an established biological activity according to a struc-
ture-activity relationship (SAR) series and medicinal chemistry are termed 
‘leads’ that can develop into drug candidates for clinical testing.
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Figure 2  Typical location of controls on a 96-well plate. In a primary screen, the designed biological assay is performed by using a robot to add the target 
of interest and specific reagents to each well, which already contain a different compound or control. After incubation or other required manipulations, an 
activity measurement is obtained for every well by automated plate reading. These raw data represent the activity measurement of each compound or control 
against a specified target. The measurement units and the scales depend on the design of the biological assay, the target of interest and the specific reader 
or imager that is used. (a) Generally, in a compound library, 80 different compounds (gray circles) are stored in the middle of a 96-well plate and wells on
the first and last columns are left empty. Often in a high-throughput screen, eight positive controls (red circles) are placed in column 1 and four negative 
controls (blue circles) are placed in column 12. The other four wells (white circles) in column 12 remain empty and are not used. (b) Ideally, controls should 
be located randomly among the 96 wells of each plate. Only the first and the last columns are typically available for controls, since compounds (gray circles) 
are stored in the 80 middle wells. Despite this limitation, edge-related bias can be minimized by alternating the eight positive controls (red circles) and the 
eight negative controls (blue circles) in the available wells, such that they appear equally on each of the eight rows and each of the two available columns.

Percent of control. A qualitative measure of test compound activity 
defined as

where xi is the raw measurement on the ith compound and c− is 
the mean of the measurements on the positive controls in an 
antagonist assay. 

Normalized percent inhibition. Another normalization method using 
controls:

where xi is the raw measurement on the ith compound, c− + and c− – 
are the means of the measurements on the positive and negative 
controls, respectively, in an antagonist assay.

Z score. A simple and widely known normalizing method 
calculated as

where xi is the raw measurement on the ith compound, x− and 

sx are the mean and the standard deviation, respectively, of all 
measurements within the plate.

B score9. The residual (rijp) of the measurement for row i and 
column j on the pth plate is obtained by fitting a two-way median 
polish and is defined below as

The residual is defined as the difference between the observed 
result (yijp) and the fitted value (ŷijp , defined as the estimated 
average of the plate (µ̂p) + estimated systematic measurement 
offset for row i on plate p (R̂ip) + estimated systematic 
measurement column offset for column j on plate p (Ĉjp)).
For each plate p, the adjusted median absolute deviation (MADp) 
is obtained from the rijp’s (MADp). The B score is calculated as 
follows:

Median absolute deviation (MAD). A robust estimate of spread of 
the rijp’s values:

Box 1  Formulae for normalization

POC =
xi

c
× 100

¯

Z =
xi

¯– x
sx

NPI =
c̄ c̄
c̄ – xi

–  –

+

+

rijp = yijp – yijp = yijp –(   + Rip + Cjp)µˆ ˆ ˆ ˆ

Bscore =
rijp

MADp

median{|rijp – median(rijp)|}
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Inferential errors can be caused by ‘noise’ due to technical or pro-
cedural factors, including assay formats, poor pipette delivery, robotic 
failures and unintended differences in compound concentrations due to 
evaporation of solvent, either from the compound collection or during 
the assay set-up. Errors of unknown origin may also develop over the 
course of the entire screen. Their adverse effects can often be minimized 
by quality control procedures, although statistical corrections may also 
be needed to mitigate the effects of uncontrolled variation (see “HTS 
data processing” section). Other factors that are less amenable to proce-
dural quality control but that can nonetheless add extraneous variation 
include potency differences across compounds, and systematic across-
plate and within-plate column or row biases (e.g., edge effects).

Differences in variability can also create inequalities among the com-
pounds. The measured activity of low variability compounds will almost 
always be close to their true levels. Thus, even when measured in singlet, 
hits are more easily discovered and false hits more easily avoided with 
these compounds. By contrast, the measured activity levels of highly vari-
able compounds may differ considerably from their true values. It is cor-
respondingly more difficult to discover hits and to avoid false positives.

Once technical and procedural efficiencies have been optimized, 
the only way to minimize variability further is to obtain estimates of 
activity levels by taking averages (e.g., mean, median) across replicate 
measurements. Activity estimates based on repeated measurements are 
less variable than estimates based on single measurements. Replicate 
measurements also provide direct estimates of variability, which can be 
used to estimate the probability of detecting true hits (power analysis), 
facilitating cost/benefit analyses. Moreover, replicates reduce the number 
of false negatives without increasing the number of false positives (see 
“Use of replicates” section).

We review current data preprocessing and hit identification methods 
for primary screening. We discuss their use and limitations, problems 
with the constant error assumption, the influence of hit threshold on 
false-positive and false-negative rates, and factors that can degrade assay 
sensitivity and specificity. We also discuss the advantages of replicates 
and make recommendations for the statistical analysis of HTS.

HTS data processing
A well-defined and highly sensitive test system requires both quality 
control and accurate measurements. Within-plate reference controls 
are typically used for these purposes. Controls help to identify plate-to-
plate variability and establish assay background levels. Normalization of 
raw data removes systematic plate-to-plate variation, making measure-
ments comparable across plates. Systematic errors decrease the validity 
of results by either over- or underestimating true values. These biases 
can affect all measurements equally or can depend on factors such as 
well location, liquid dispensing and signal intensity. Although recent 
improvements in automation can minimize bias, and thereby provide 
more reproducible results, equipment malfunctions can nonetheless 
introduce systematic errors, which must be corrected at the data pro-
cessing and analysis stages.

Measured compound activity is a function of at least two factors: the 
compound’s true activity and random error (see also “Use of replicates” 
section). Symbolically, one simple additive model might be Yijp = µijp + 
εijp where Yijp is the observed raw measurement obtained from the well 
located on row i and column j on the pth plate, µijp is the ‘true’ activity 
and εijp is the effect of all sources of error. Assuming no bias, the εijk’s are 
assumed to have zero mean and a specified probability distribution (e.g., 
normal). Another simple model is Yijp = µijp + Rip + Cjp + εijp where R 
and C represent plate-specific row and column artifacts, respectively, and 
εijp represents remaining sources of error. (This latter model is assumed 
by the median polish procedure described below.) Specifying models 

explicitly in this manner has the advantage of suggesting how sensitivity 
and specificity gains can be achieved most cost effectively.

Current practice. Because of the manner in which compound col-
lections are plated, controls are typically placed contiguously on the 
outer columns (Fig. 2). Unfortunately, a systematic outer column effect 
affects all of the measurements on the plate because they are adjusted 
relative to these controls. For example, edge effects may lower (or 
increase) detection levels on average along the edge compared to the

Figure 3  Titration series in a translation assay. These results from an 
anisomycin titration in a Renilla luciferase translation assay show that 
variability differs across the various concentrations. A hit may be defined as 
any activity measurement that is at least three standard deviations away from 
the mean of the control measurements. This corresponds to a dual intensity 
value of 19,894 (dotted line). All of the measurements for concentrations 
≥0.78 are hits (all of the values are below the dotted line). There were six 
false positives, however, for the three lowest nonnull concentrations.
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Figure 4  Presence of edge effects in a high-throughput screen. Data from 
two different screens (http://chembank.broad.harvard.edu/screens) with 
duplicate measurements across plates are presented. Tukey’s two-way 
median polish was applied to each plate to obtain estimates of row and 
column effects and of residuals (that is, compound measurements after 
the polish procedure removed any row and column effects). For each plate, 
variances of the 16 row effects and of the 24 column effects were divided by 
the variance of the 384 residuals. Box plots of these variance ratios illustrate 
the presence of a column effect for screen 295.
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remainder of the plate. Consequently, background correction will be 
lower (or higher) if controls are located on this edge, causing com-
pound activities to appear higher (or lower) than their true states. 
Worse still, the edge effects may be present in some plates but not others 
(see “Recommendations” section below). Cell-based biological controls 
are especially problematic because of variable growth patterns7; cell 
clumping or evaporation within different areas of the plate can lead 
to different growth conditions and ultimately to position-related bias. 
Regardless of cause, positional effects increase the rate of false positives 
and false negatives.

‘Percent of control’ is one preprocessing method that attempts to 
correct for plate-to-plate variability by normalizing compound mea-
surements relative to controls. Raw measurements for each compound, 
for example, can be divided by the average of within-plate controls. 
‘Normalized percent inhibition’ is another control-based method in 
which the difference between the compound measurement and the 
mean of the positive controls is divided by the difference between the 
means of the measurements on the positive and the negative controls. 
The ‘Z score’ method excludes control measurements altogether under 
the assumption that most compounds are inactive and can serve as 
controls; compound measurements are rescaled relative to within-plate 

variation by subtracting the average of the plate values and dividing the 
difference by the standard deviation estimated from all measurements 
of the plate (see Box 1).

The three methods described above implicitly assume a random error 
distribution that is common to all measurements within a single plate, 
although without replicates this assumption cannot be verified directly. 
Positive and negative controls may exhibit differences in variability, how-
ever, raising questions about the constant error assumption. Differences 
in variability among compounds are also likely inasmuch as inactive 
compounds are similar to negative controls, and active compounds 
are similar to positive controls8. For example, Figure 3 shows results 
from a titration series of a protein translation assay in which variability 
among replicates differs across the various concentrations. In general, 
nonconstant variances among the compounds of interest may be due to 
differences in luminescence, reactivity or solubility. The serious errors 
of inference that can arise from incorrectly assuming one distribution 
even when departures from it are minimal have been cogently described 
by Tukey9.

Another potential difficulty is that these three methods rely on non-
robust statistics. Means and standard deviations are greatly influenced 
by statistical outliers, which in the context of HTS are putative hits. In 

Under the assumption of normally distributed errors with mean µ 
and variance σ2, the statistic

is distributed as a χ2 with K – 1 degrees of freedom where s2 
is the sample variance for each of the K replicated compound 
measurements.

For each compound, consider the model:

where k = 1,…,K replicates and it is assumed that:

A standard Bayesian choice for a prior distribution of the variances  
is an inverse gamma with unknown parameters a and b:

The a and b parameters are assumed to be constant across 

compounds and can be estimated from the data from all 
compounds by fitting an F-distribution to the sample
variances s2:

Wright and Simon’s18 procedure for estimating the a and b 

parameters was used to generate the data shown in Figure 7.

Box 2  Examining the distribution of sample variances

(K – 1)s 2

 2σ

yk = xk    +   kβ ε'

k ~ N (0,   2)ε σ

–2 ~ G (a,b) ≡σ x a–1 exp (–x / b)
Γ(a)ba

ab(s2) ~ F (K – 1),2a

H0: ‘no hits’ H1: ‘hits’ H0: ‘no hits’ H1: ‘hits’ H0: ‘no hits’ H1: ‘hits’
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Figure 5  Replicates, false-positive and false-negative rates. In hypothesis testing a false-positive rate (type I error) is the probability of rejecting the null 
hypothesis (H0) given that this hypothesis is true. The false-negative rate (type II error) is the probability of failing to reject the null hypothesis (H0) given 
that the alternative hypothesis (H1) is true. (a) Given a fixed threshold value, the false-negative and false-positive rates are represented by the blue and the 
orange areas under the curve, respectively. (b) Decreasing the threshold value results in an increase in the false-positive rate and a decrease in the false-
negative rate. The opposite would be true if the threshold value were increased. (c) The benefit of multiple measurements (replicates) is illustrated. The use 
of replicates reduces data variability, which is reflected in the narrowed data distributions. Consequently, the false-negative rate is minimized whereas the 
false-positive rate remains fixed.
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statistical terms, the mean and the standard deviation have low break-
down points, in contrast to more resistant location and scale estima-
tors (e.g., median, Tukey biweight, median absolute deviation). One 
recent proposal circumvents these issues by adopting a more robust 
data analysis procedure.

The B score10 is a robust analog of the Z score which uses an index 
of dispersion that is more resistant to the presence of outliers and more 
robust to differences in the measurement error distributions of the com-
pounds (Box 1). A two-way median polish is first computed to account 
for row and column effects of the plate. The resulting residuals within 
each plate are then divided by their median absolute deviation to stan-
dardize for plate-to-plate variability. The B score has three advantages: it 
is nonparametric (that is, makes minimal distributional assumptions), 
it minimizes measurement bias due to positional effects and is resistant 
to statistical outliers.

Recommendations. In the absence of compelling reasons to the 
contrary, we prefer normalizing the data without using controls. 
Specifically, we prefer the B score method, especially if row or col-
umn biases are suspected. Evidence of these biases can be obtained 

by examining the variability of the row and column effects estimated 
by the median polish procedure relative to the residual compound 
measurements. To illustrate, we reanalyzed two publicly available 
screening data sets with duplicate measurements for a yeast peptide 
inhibition assay and a DNA synthesis assay (http://chembank.broad.
harvard.edu/screens; screen numbers 295 and 900, respectively). 
Figure 4 shows a strong and variable column effect for screen 295. 
Moreover, as we demonstrate in the “Use of replicates” section, the 
variability of B scores may more adequately reflect actual random 
error conditions. This in turn facilitates the decision process because 
the compound measurements can be benchmarked against theoretical 
error distributions.

If researchers were to use the Z score method, we would advise they 
use robust versions to minimize the undesirable influence of outlier 
compounds (that is, ‘hits’). For example, in a ‘jackknife’ Z score method,  
x− and sx (third equation in Box 1) are calculated excluding the com-
pound of interest (x value in the equation); accordingly, sx differs for 
each individual compound. Alternatively, in a ‘robust’ Z score method, 
x− and sx are replaced by more robust measures (e.g., median and median 
absolute deviation, respectively).
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Figure 6  Verification of the assumptions of 
normally distributed data with constant variance 
among compounds. Empirical values correspond 
to a function of the sample variances. Under 
the assumption of a constant variance among 
compounds, the overall variance might be 
estimated by the mean of the sample variances. 
Each sample variance (obtained from the 
duplicate measurements) is multiplied by (K – 1) 
and divided by the overall variance estimate and 
the ratios should follow a chi-square distribution 
with 1 degree of freedom (Box 2). Results of the 
Kolmogorov-Smirnov (KS) test of differences 
between the theoretical and the empirical 
distributions are shown.
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Figure 7  Verification of the assumption that the 
within-compound variances follow an inverse 
gamma distribution. Empirical values correspond 
to a function of the sample variances. Under the 
assumption of normally distributed data, each 
sample variance (obtained from the duplicate 
measurements) is multiplied by the estimated 
a and b parameters of the inverse gamma 
distribution and the result should follow an F 
distribution with 1 and 2a degrees of freedom 
(Box 2). Results of the Kolmogorov-Smirnov (KS) 
test of differences between the theoretical and 
the empirical distributions are shown.
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Controls, if necessary for a specific assay, should be used carefully. 
Ideally, they should be located randomly within plates, thereby mini-
mizing row or column biases. Current compound collection formats, 
however, do not lend themselves to randomization. Potential positional 
effects can nonetheless be minimized by varying the location of controls 
within plates in a systematic manner. One way consists of alternating 
well locations for the positive and negative controls along the avail-
able edges of the plate (Fig. 2). Thus, positive and negative controls 
will appear equally in each row and in each column and may minimize 
edge-related bias. For example, in a 96-well plate, an order effect may 
produce different biases among the different columns. The current prac-
tice consisting of eight positive controls on the first column and four 
negative controls on the last column (Fig. 2a) is less efficient than the 
alternating method (Fig. 2b).

If controls are used to normalize compound intensities, it is important 
to obtain as accurate and precise measurements as possible: any inaccura-
cies and random measurement errors will lower the accuracy and precision 
of the normalized values through error propagation. One way to improve 
precision is to obtain a relatively large number of control measurements 
(see the “Use of replicates: recommendations” section). Another way is to 
delete outliers among the controls before normalizing. Identifying mea-
surement outliers among controls is more straightforward than among the 
compounds of interest because the control measurements are replicates of 
the same measurement process and should have similar values.

Statistical inference and hit identification thresholds
Regardless of library design strategy (rational or combinatorial), statisti-
cal methods offer the means to characterize quality of screens and of hits 
within a probabilistic framework. Quality can be defined as the ability 
of the screening process to accurately identify compounds that can be 
developed into potential leads11. A statistical approach to these issues 
has a number of advantages, including objectivity, reproducibility and 
ease of comparison across screens.

Once data have been preprocessed with quality control checks and 
normalization procedures, the next critical step is to decide which 
compounds should be processed in a secondary screen. Currently, 
this inferential process is not well defined statistically: procedures for 
hit identification are based on informal ‘rules of thumb’ rather than 
on probabilistic judgments of error rates. In academic settings and in 
smaller companies, informal rules may also be based on particular labo-
ratory constraints such as capacity limitations. Although it is generally 
appreciated that lowering the hit-threshold increases false-positive rates 
while lowering false-negative rates, statistical models can better quantify 
the balance between specificity and sensitivity by assigning probabilities 
to the two types of inferential errors (Fig. 5).

Current practice. One way to identify hits is to plot raw or preprocessed 
measurements against compound identity (that is, plot each activity 
measurement on the y-axis and the well identity 1,2,... 96 on the x-axis) 
for each plate separately. Compounds whose measured activity devi-
ates from the bulk of the activity measurements are identified as hits. 
Although this subjective ‘eyeball’ method may be adequate for identi-
fying highly active compounds, potentially important compounds of 
low or intermediate potency are difficult to identify reliably and may 
be missed.

Hits can also be identified as a percentage of the compounds that 
generate the highest measured activity (e.g., top 1%4). From an optimi-
zation perspective, this method is arbitrary and suffers from the absence 
of a probability model. Without prior consideration of the true number 
of active compounds, one cannot optimize the percentage of primary 
screen compounds to be screened a second time. If the number of identi-
fied potential hits is dictated by the capacity for secondary screening, 
specificity and sensitivity may vary widely across screens. Consequently, 
the quality of the results from screen to screen within a laboratory will 
depend on the extent to which threshold choice reflects the actual num-
ber of true active compounds in the various screens.

One sample t-test: With K replicates, for each compound a Student 
t statistic is

where x− and s are the arithmetic mean and the standard deviation, 
respectively, of the K replicate measurements, cons is a constant 
typically equal to zero. t follows a t-distribution with K – 1 degrees 
of freedom.

‘Modified’ one-sample t-test: After estimation of the a and b 
parameters by fitting an inverse gamma distribution to the set 
of variances across replicates for each compound (see Box 2), a 
variation of the previous standard t-test is:

where

where x− and s2 are the arithmetic mean and the variance, 
respectively, of the K replicate measurements. The degrees of 
freedom for the test are now K – 1 + 2a, an increase of 2a over 
the standard t-test.

s~2 can be viewed as a weighted average of the observed 
compound-specific variance s2 and an estimate (ab)–1 of 
the ‘typical’ error variance underlying the error distributions 
of different compounds. The weights are (K – 1) and 2a, 
respectively. A very large value of a is equivalent to assuming 
a common variance across all compounds and to simply 
averaging all of the observed variances, thereby virtually ignoring 
compound-specific variances. Smaller values of a imply that the 
underlying variances across compounds are heterogeneous and 
that the observed compound-specific variances be ‘trusted’ more. 
In Figure 7, the values of a for screens 295 and 900 were 2.84 
and 3.64, respectively for the B scores, and 1.11 and 4.12, 
respectively, for the Z scores. Accordingly, the estimates were 
1:2.84 and 1:3.64 amalgams of the compound-specific and the 
‘typical’ variances for the B scores, and similarly 1:1.11 and 
1:4.12 for the Z scores.

For an unreplicated compound, so that K – 1 = 0, s~2 is simply 
the typical value, estimated by the quantity (ab)–1 with 2a 
degrees of freedom (e.g., ~6 d.f. for the B scores), which is a 
compromise between zero degrees of freedom associated with 
single measurements and ‘number of compounds – 1’ degrees 
of freedom (that is, 2,687 and 3,839 degrees of freedom, 
respectively for screen 295 and 900) associated with a common 
error model.

Box 3  Test statistics for hit detection with replicates

t =
x – cons
s 1 / K
¯

t =
x – cons
s 1 / K
¯∼
∼

s  =∼ (K – 1)s2 + 2a(ab)–1
2

(K – 1) + 2a
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Compounds whose activity exceeds a fixed ‘percent of control’ thresh-
old may also be considered as hits. For example, in an agonist assay any 
compound with an activity measurement that is at least twice the average 
of the measurements on the negative controls is deemed a hit.

Alternatively, the hit threshold may be defined as a number of 
standard deviations (typically 3) beyond the mean of the raw or pro-
cessed data. However, hits (outliers) may cause the distribution of the 
compound measurements to be skewed. Such a phenomenon may be 
observed when performing a fluorescent-based assay and when a large 
number of compounds in the collection are fluorescent. Statistically, 
imagine the observations as arising from a mixture of two populations 
with different means (e.g., nonactive compound measurements centered 
around one mean and active compound measurements around a differ-
ent mean—likely with different standard deviations also).

As with the preprocessing methods described earlier, the threshold 
methods described above assume a common magnitude of random error 
for all measurements and rely on nonrobust statistics, which may lead to 
inferential errors in hit detection. Hit detection depends jointly on com-
pound concentration, potency and variability. Potency will differ across 
compounds within a screen, as will actual concentrations due to uncon-
trolled factors such as solvent evaporation and compound solubility. 
The easiest hits to detect will be compounds with high relative potencies 
and concentrations and low variability (Fig. 3). Singlet-measurement
false positives for the three lowest nonnull concentrations were elimi-
nated when activity measurements were based on means across the eight 
replicate measurements per concentration. Methods that estimate ran-
dom error without assuming constant error are described in “Use of 
replicates: recommendations” below.

Recommendations. One view about false negatives is that little can be 
done about them and so it is best to adopt a forward-looking perspec-
tive and to pursue the hits one does have. We contend, however, that it 
is important to quantify potential false-negative rates before deciding 
whether or not they are negligible in a particular screen. If 0.1% of a mil-
lion compounds to be screened are truly active, a low false-negative rate 
of 2% represents 20 potential candidates lost. With synthetic compound 
collections, the potential loss may be lessened because they are made 
from a set number of basic scaffolds. Thus, in practice, missing an active 
compound may not matter if related compounds are detected. When 
screening natural products or extracts, however, truly unique chemical 
entities will go undetected. Although it is difficult to assign a monetary 
value to these lost candidates, decisions to not follow-up will typically 
not be revisited and as such represent irretrievable financial losses.

Verifying data handling assumptions and contrasting various approaches 
in formal methodological studies are important steps in determining the 
most cost-effective procedures. Additivity assumptions, for example, can 
readily be verified from a simple graphical procedure once the data have 
been preprocessed by the median polish procedure12. This same procedure 
provides a simple method for determining the appropriate data transfor-
mation (e.g., log), which will produce additive measurements.

These various steps are necessary for quantifying many aspects of the 
decision-making process in HTS. Currently, many important go/no-go 
decisions are based on perceived necessity (e.g., affordability, capacity), 
subjective perception and past experience. These considerations must 
enter into any decision process. Statistical modeling of the type we are 
encouraging enhances rather than replaces this process. Although we 
believe that currently practiced methods are often insufficiently sensi-
tive to detect hits that arise from potentially important but marginally 
active compounds, attempts to improve sensitivity must be balanced 
against specificity and demonstrate cost effectiveness. One way to quan-
tify this balance is to obtain estimates of random error from replicate

measurements and to conduct statistical power analysis. Judicious use of 
replicates will improve sensitivity to minimally active but pharmacologi-
cally important compounds that go undetected otherwise.

Use of replicates
Random error reflects inevitable uncertainties in all scientific measure-
ments. This noise unpredictably raises or lowers measurements relative 
to their true values. Potential sources of random error include biological, 
instrument and human-related influences. Random error accumulates 
as a collection of several minimal differences across assays, such as volt-
age variation, liquid dispensing differences, as well as reagent or sample 
preparation and handling11. Compound-related problems involving 
chemical properties and activity (e.g., stability, solubility, autofluores-
cence and degradation) also affect measurement precision.

Precision can be increased by obtaining replicates and by minimizing 
extraneous variation due to sample handling and processing. Random 
error estimates, which are central to statistical inference, are typically 
obtained from replicate measurements of the same attribute or process. 
Having empirical estimates of variability allows one to use statistical 
power analysis to control the false-negative rate while maintaining a 
fixed false-positive rate (Fig. 5). We anticipate that obtaining replicates 
for at least some compounds in primary screens will become more 
routine.

Current practice. Compounds in primary screens are typically mea-
sured only once because of time and cost issues, although the use of 
duplicate measurements has been recognized for secondary screens 
and is beginning to be recommended for primary screens (http://iccb.
med.harvard.edu/screening/guidelines.htm). Absent replicates, strong 
assumptions must be made to estimate random error. For example, 
Buxser and Vroegop13 describe an approach in which the variability 
among replicated control measurements is used to estimate variability 
of the unreplicated compound measurements. Alternatively, random 
error can be estimated from the variability across single measurements 
of all compounds on a plate, assuming that all compounds are inactive 
and that they all have the same random error; early approaches to gene 
expression microarray analysis adopted a similar approach for estimat-
ing error from single measurements14. Single measurement methods 
have ultimately proven inadequate15, however, and it is now standard 
practice to obtain at least three replicates per measurement in recog-
nition that replicates offer advantages that outweigh short-term cost 
considerations16,17.

Ideal replicates are those measurements that are repeated for the same 
compound under the same experimental conditions. For this reason 
and because they underestimate total random error, multiple reread-
ings of the same plate are not recommended as replicates, except as 
a check for possible extraneous variation due to the reading process 
itself. Similarly, structurally similar compounds (analogs) are not rec-
ommended as replicates, despite the fact that they may show compa-
rable activity. Nor should measurements of the same compounds under 
different experimental circumstances (e.g., primary versus secondary 
screen) be used as replicates because they may be influenced by dif-
ferent extraneous factors (e.g., differences among reagents, batches of 
compounds and time effects). Finally, pooling compounds in various 
combinations within individual wells offers timesaving advantages but 
cannot be considered replication in the usual sense. For example, false 
positives are more likely to arise when weakly interacting compounds 
are pooled in the same well or when true active compounds within a 
row increase. By contrast, false negatives are less common in compound 
pooling, but may arise if pooled compounds have opposite biological 
effects of similar size2.
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Recommendations. Replicates offer the twin advantages of greater pre-
cision for activity measurements and the means to estimate variability 
associated with the measurements. Compared with the uncertainty of 
a single measurement, the imprecision (standard error) of a mean is 
reduced by 

where n refers to the number of replicates. Having two replicates reduces 
imprecision by 29%; having three replicates reduces it by a further 13% 
while having four replicates reduces it an additional 8% (that is, to 
50% of the imprecision associated with a single measurement). Thus, 
replicates make minimally and moderately active compounds easier 
to detect.

Replicates may appear in wells on the same or on different plates. 
Although within-plate variation (due, for example, to plate composition 
and handling) will typically be smaller, across-plate replication is pre-
ferred because it represents a more realistic estimate of variation neces-
sary for generalizing results beyond the immediate sample. In general, it 
is important to obtain estimates of total variability of any measurement 
process, what has been called ‘genuine replication’18.

We have argued that much of current practice makes strong assump-
tions about the data (e.g., same magnitude of random error associated 
with all measurements), which if incorrect can increase both the false-
positive and the false-negative rates. Without large-scale studies with 
replicated measurements, these assumptions and the advantages of more 
complex statistical modeling approaches are difficult to verify. Moreover, 
it is unlikely that one approach will be optimal for all screens. These 
caveats notwithstanding, minimal replication can be used to examine 
the reasonableness of current assumptions and to potentially improve 
overall screen sensitivity and specificity.

We illustrate the importance of preprocessing, the need to check 
assumptions regarding error distributions and the other options available
when assumptions are not met, by performing additional analyses on the 
Figure 4 data. If the errors associated with the normalized compound 
measurements from these screens were normally distributed with con-
stant variance across compounds, the sample variances based on the 
duplicate measurements would follow a χ2 (1) distribution (Box 2). 
Figure 6 illustrates the lack of fit, however, between the theoretical and 
the observed variance distributions for these data, indicating that the 
normality/constant variance combined assumption is not tenable after 
preprocessing by either the B score or the Z score procedures.

Alternatively, one can assume that the error associated with compound 
measurements is normally distributed but with unequal variances dis-
tributed across the compounds according to an inverse gamma distri-
bution (Box 2). An empirical Bayes approach using this model has been 
used successfully for analysis of microarray data with minimal replica-
tion15,19,20. Figure 7 shows that the error variances of the data sets from 
Figure 6 fit an inverse gamma distribution for both data sets for the B 
scores and for one of the data sets for the Z scores. An important advan-
tage of this variance distribution pattern is that standard statistical tests 
of compound activity can be constructed using a weighted average of the 
compound-specific variances estimated from replicated measurements 
and the overall estimate obtained from the variance distribution; when 
only a random subsample of the compounds has been replicated, the 
latter variance estimate can be applied to compounds measured only 
in singlet from the same screen (Box 3). In either case, the more similar 
the compound-specific variances are to each other, the more reliable the 
overall variance estimate will be. This in turn will provide more degrees of 
freedom and more power for the statistical tests. Figure 7 also illustrates 
the value of correcting for row and column effects. In the presence of 

column or row biases (screen 295), B scores more closely approximated 
the theoretical inverse gamma distribution than the corresponding Z 
scores, although in their absence (screen 900) the B score method pro-
duced a slightly poorer fit.

As more extensively replicated data sets become available, other data-
analytic approaches can be examined and optimized. For example, 
although we found no evidence of a relationship between signal inten-
sity and replicate variability in the two data sets we examined, such a 
relationship has been used in the microarray context in combination 
with the inverse gamma variance distribution assumption21; this type 
of relationship may provide additional useful information for estimat-
ing random error associated with replicate and singlet measurements. 
Similarly, if various classes of compounds are thought to differ in terms 
of variability, random subsets of the various classes may produce more 
accurate estimates of variability when examined separately. Another 
approach that may show promise is to model the distribution of activity
measurements as a mixture of two distributions (inactive and active 
compounds)13. In short, the principle of ‘borrowing strength’ from 
information available from the data in total can provide useful infor-
mation that would normally be obtained only from large numbers of 
replicates.

Conclusions
Statistics currently serve a limited role in HTS. One use is to correlate 
chemical properties with activity levels at the screen development stage 
to provide information for compound selection and for property modi-
fication to enhance chemical activity22,23. Once the screen has been run, 
data mining software packages are increasingly being used for quality 
control. Notwithstanding these advances in data analysis, HTS continues 
to lack universal procedures for processing and extracting knowledge 
from screens24. We discuss four broad conclusions below that we believe 
are warranted at this early stage of development for the statistical model-
ing of HTS data.

Replicate measurements provide numerous advantages for check-
ing measurement assumptions and improving hit/non-hit decisions. 
Moreover, quantification and characterization of error variances 
obtained from replicate measurements allow specificity and sensitivity 
optimization of individual screens. Given fixed costs, standard statistical 
power analysis can be used to reach cost-effective decisions regarding 
the number of plates within a screen to be replicated and the number 
of replicates.

Statistically adjusting measurements for row and column effects 
through procedures such as the median polish offers gains in inference 
and should be used routinely.

The assumption of a common error variance across compounds 
implicit to many current hit identification approaches is incorrect 
at least some of the time. At a minimum, the assumption should be 
routinely verified by replicating some of the compounds and checked 
against theoretically derived distributions. When the assumption of 
constant error is untenable, the empirical Bayes approach to estimating 
random error offers an attractive alternative. It provides an amalgam 
of the specific within-compound variations (if measured in replicate) 
and the error estimate derived from the distribution of the within-
compound variances, with the latter alone providing the ‘best’ estimate 
when a particular compound has not been replicated. This combina-
tion of sources of information is a compromise between using only the 
within-compound (and thus highly variable) error estimates and the 
average but unrealistic (and thus falsely precise) pooled error estimate 
that would be appropriate under a common error model.

The limitations of standard statistical approaches with minimal rep-
lication can be partially offset by ‘borrowing strength’ from the large 

100 × (1 – 1/     ) % n
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number of available measurements (compounds). We have provided 
one example of this principle by using the distribution of sample error 
variances to obtain error estimates for individual compounds.

Advances in statistical modeling of HTS data will provide objective 
benchmarks against which to compare experimental results and as a con-
sequence help to standardize the hit identification process. By improving 
measurement quality and by providing quantifiable false-positive/false-
negative ratios, statistical modeling can improve the efficacy of nonsta-
tistical considerations for lead development (such as counter screens to 
identify nonspecific interference). In this manner, the often-cited advice 
to identify false leads early and quickly can be strengthened while mini-
mizing potentially costly false negatives.
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