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Abstract

We propose a stochastic modelling of the PCR amplification process by a size-dependent
branching process starting as a supercritical Bienaymé–Galton–Watson transient phase
and then having a saturation near-critical size-dependent phase. This model allows us to
estimate the probability of replication of a DNA molecule at each cycle of a single PCR
trajectory with a very good accuracy.
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1. Introduction

The polymerase chain reaction (PCR; see [14]) is an in vitro enzymatic reaction allowing
the amplification of the number of copies of a specific region of DNA. This technique is largely
used in molecular biology [15] since it enables the detection of low abundance of DNA. The
aim of quantitative PCR is to determine the initial amount of specific nucleic acids (the target)
present in a sample. Quantitative analysis is now a major use of PCR and has many applications
in virology [13], gene-expression studies [25] or pathogenic bacteria detection [9]. For more
detailed applications, see [2].

The PCR proceeds through a succession of 30–50 cycles of replication. The number of copies
of the target DNA increases at most by a factor of 2 at each cycle, but, in practice, the probability
that a molecule will be duplicated after one cycle of amplification, known as the efficiency of
the reaction, is less than 1. The early cycles of PCR are characterized by an exponential increase
in the target population. Then, as the reaction components become limiting, the efficiency of
the reaction decreases, leading to a saturation phase [21] decomposed into a linear phase and a
phase called the plateau.

Our aim is to propose a modelling of the whole PCR amplification process in order to
construct estimators of the efficiency from a single amplification trajectory. We choose to
model the amplification process by a size-dependent branching process since branching process
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theory [6] allows us to take into account the stochastic variability of the reaction and the size-
dependent setting enables us to take into account the saturation phase of the amplification that
appears much less noisy relative to the exponential one.

Branching processes have already been used to model the amplification process either for
explaining the randomness of the amplification or for estimating some characteristics of this
process. Single-type branching processes in discrete time were first applied to model the PCR
for estimating replication errors of the Taq DNA polymerase [10]. Sun [24], Weiss and von
Haeseler [26], Stolovitzky and Cecchi [23], Peccoud and Jacob [17] and Piau [19] have also
used single-type branching process theory to model the exponential phase. Nedelman et al.
[16] proposed a multitype Bienaymé–Galton–Watson branching process for native DNA, long
products and short products. Relying on the enzymological approach of the PCR described by
Schnell and Mendoza [22], Jagers and Klebaner [7] used a size-dependent branching process
with the following efficiency for the reaction:

p(Nn) = K

K + Nn

, (1.1)

where Nn is the number of DNA molecules present at cycle n and K is the Michaelis–Menten
constant of the reaction. They obtained that limn→∞ Nn/n = K almost surely, leading to a
theoretical proof of the existence of the linear phase of the saturation observed in real PCR
data.

Jacob and Peccoud [5] proved strong consistency and gave an exponential rate of convergence
of the estimator of the efficiency from migrating binomial observations in the context of the
modelling of the exponential phase by a supercritical Bienaymé–Galton–Watson process.

We describe in Section 2 the quantification method that is currently widely used.
In Section 3, we define a size-dependent modelling of the whole amplification process

based on the concept of saturation: denoting the saturation threshold by S, we assume that the
efficiency at cycle n is a decreasing function of S(Nn)S

−1 denoted by f (S(Nn)S
−1), where

S(Nn) = S 1{Nn<S} + Nn 1{Nn≥S}, 1{·} being the indicator function. The threshold S and the
function f (·) are chosen in order to generalize (1.1): in (1.1), S = N0, i.e. the saturation occurs
at the beginning of the reaction, whereas in the model proposed here, there is an exponential
phase which persists as long as Nn ≤ S.

In Section 4, we study the asymptotic behavior of the size-dependent process relying on
results of Kersting [8] and Jagers and Klebaner [7] and we prove that the efficiency model
we propose is asymptotically valid in the linear part of the saturation phase. We will use this
behavior to study the asymptotic properties of the estimator of K given in Section 5 as n → ∞
and based on the conditional least-squares method [11].

In Section 6, we study the properties of the estimators at finite distances relying on simu-
lations and real PCR data: we estimate parameters of the efficiency model and also the last
cycle of the exponential phase. Although the asymptotics concern the number of observed
cycles and although we have only a few reliable observations, we obtain a very good accuracy
for the estimations since the strong law of large numbers plays a significant role as soon as
n belongs to the end of the exponential phase or the beginning of the saturation phase: for
example, relying on five successive observations of the beginning of the saturation phase, the
standard deviation of the estimator of the efficiency of the exponential phase based on 500 noisy
simulated trajectories is less than 10−3.
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2. The usual quantitative PCR methodology

The most usual method for quantifying the initial amount of the target uses a standard which
is co-amplified with the target [3]. Several dilutions {N0,i}i of the standard with known initial
number of DNA molecules are needed and the initial amount of the target is calculated from the
determination of the efficiency p in the exponential phase by using linear regression analysis
based on a single observation in the exponential phase for each amplification trajectory. The
quantification is based on the classical assumption that the fluorescence measured at cycle
n, denoted by Fn, is proportional to the number of DNA molecules, Nn, the accumulated
DNA molecules being measured thanks to the fluorescence they emit [4]. But this method has
several drawbacks: it assumes that p is identical for all the amplification trajectories and relies
on the strong assumption that the target and the standard have identical efficiency, but some
authors have questioned the validity of these hypotheses [18], [20]. Moreover, it uses only
one observation in the exponential phase per amplification trajectory and the quantification
by regression needs many observations (generally the 96 wells of the measuring apparatus).
Furthermore, the quantification is based on the approximate relationship Nn � (1 + p)nN0,
which leads to the confusion of the measurement error and the variability of the reaction in the
regression model error.

3. Stochastic modelling of the amplification process

We assume that each molecule can give birth at the next cycle to two identical molecules if
the replication succeeds or remains unchanged if the replication fails. The number of molecules
at cycle n + 1 is given by the recursion formula

Nn+1 =
Nn∑
i=1

Yn+1,i , (3.1)

where Yn+1,i is the number of descendants at cycle n+1 of the ith molecule belonging to cycle
n. We assume that the {Yn+1,i}i are independent and identically distributed (i.i.d.) random
variables conditionally to Fn, the σ -algebra generated by N0, . . . , Nn, and that the replication
depends only on the initial conditions and on the amount of molecules already synthesized.
Then the process may be considered as a size-dependent process and, denoting the offspring
mean and variance by m(Nn) = E(Yn+1,i | Fn) and σ 2(Nn) = var(Yn+1,i | Fn) respectively,
we have

P(Yn+1,i = 2 | Fn) = p(Nn),

P(Yn+1,i = 1 | Fn) = 1 − p(Nn),

m(Nn) = 1 + p(Nn),

σ 2(Nn) = p(Nn)(1 − p(Nn)),

where p(Nn) is the efficiency at cycle n + 1.
We model here the entire amplification process by a single-type size-dependent branching

process. The model is based on the following assumptions.

Assumption 3.1. For all n, Kn + Nn = K0 + N0, where Kn is the experimental material as
measured by the number of DNA molecules that could be synthesized.

Assumption 3.2. A saturation phenomenon occurs mainly because of a depletion of the
primers.
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More precisely, there exists a saturation coefficient, denoted by s, such that, when Kn/Nn >

s, the amplification process is not limited, i.e. the underlying branching process may be con-
sidered as a supercritical Bienaymé–Galton–Watson process (exponential phase), whereas, as
soon as Kn/Nn ≤ s, a saturation phenomenon occurs and the efficiency decreases. According
to Assumption 3.1, let S = (K0 + N0)(s + 1)−1; then

Kn

Nn

≤ s ⇐⇒ Nn

S
≥ 1. (3.2)

If the saturation instead occurs because of a loss of activity of the DNA polymerase as Nn

increases, then we may assume that there exists a saturation threshold S0 such that the saturation
occurs as soon as Nn − N0 ≥ S0, that is, Nn ≥ S, where S = N0 + S0. Therefore (3.2) may
be considered as a general assumption.

Let us recall that S(x) = S 1{x<S} + x 1{x≥S}. We assume that the efficiency p(Nn) is a
decreasing function of S(Nn)S

−1, which we denote by f (S(Nn)S
−1).

Let ns be the last cycle of the nonsaturated phase: ns = sup{n : Nn−1 < S}. Then, since
{Nn}n is increasing because P(Yn+1,i = 0 | Fn) = 0, for all n,

f (S(Nn)S
−1) =

{
f (1) if Nn < S (equivalently, if n ≤ ns − 1),

f (NnS
−1) if Nn ≥ S (equivalently, if n ≥ ns).

Here and in the sequel, we will denote f (1) by p. We will use the following model for
f (S(Nn)S

−1), generalizing (1.1):

f (S(Nn)S
−1) = µ

µ + S(Nn)S−1

1 + exp(−C(S(Nn)S
−1 − 1))

2
.

Let K = µS. Then p(Nn) may be rewritten as

p(Nn) = K

K + S(Nn)

1 + exp(−C(S(Nn)S
−1 − 1))

2
. (3.3)

The model (1.1) is a particular case of (3.3) with S = N0 and C = 0.

Remark 3.1. When considering real PCR amplification trajectories with observations in fluo-
rescence units and assuming that, for all n, the observed fluorescence Fn is proportional to the
associated number Nn of DNA molecules, then the efficiency expressed in fluorescence units
p(Fn) may be obtained from the model (3.3) with K , S and S(Nn) replaced by their equivalents
in fluorescence units, KF , SF and SF (Fn) = SF 1{Fn<SF } + Fn 1{Fn≥SF }. The parameters KF

and SF are proportional to K and S and S(Nn)S
−1 = SF (Fn)S

−1
F .

Remark 3.2. Let nobs
s be the cycle of the end of the exponential phase, i.e. nobs

s is the last cycle
n such that p(Nn−1) = p. If S < Nns , then nobs

s = ns; if S = Nns , then nobs
s = ns + 1. The

fact that nobs
s is ns or ns + 1 was noticed by Peccoud and Jacob (private communication, 1998)

from the observation of replicate PCR trajectories.

The offspring mean model m(N) = 1 + p(N) may be rewritten as

m(N) = 1 + KC

S(N)
+ r(S(N)), (3.4)
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where

KC = K

(
1 + δC

2

)
,

δC = 1{C=0},

r(S(N)) = K

S(N)(K + S(N))

[
−KC + S(N)

exp(−C(S(N)S−1 − 1)) − δC

2

]
.

Since limx→∞ x(exp (−C(x − 1)) − δC) = 0, it follows that r(N) = O(N−2).
The offspring variance σ 2(N) satisfies

σ 2(N) = KC

S(N)
− r+(S(N)), (3.5)

where

r+(S(N)) = K

S(N)(K + S(N))2

×
[
KS(N)

(
exp(−C(S(N)S−1 − 1)) + 1

2

)2

+ (K + S(N))(KC − S(N))
exp(−C(S(N)S−1 − 1)) − δC

2

]
. (3.6)

4. Asymptotic behavior of the process

In the exponential phase, m(N) = 1 + p and σ 2(N) = p(1 − p). The Bienaymé–Galton–
Watson phase is a transient phase of the model. Since S is finite, the asymptotic behavior of
the process is given by the near-critical saturation part of the model with offspring mean (3.4).

The model defined by (3.4) and (3.5) belongs to the class of models satisfying the following
assumptions (these are modified versions of Assumptions 1.1–1.4 of [11]).

Assumption 4.1. For all N ,

m(N) = 1 + p(N) and p(N) ≤ c(S(N))−α ≤ cN−α,

where α = 1 and c < ∞.

Assumption 4.2. There exists an R such that, for all N ≥ R,

σ 2(N) ≤ KC(S(N))β ≤ KCNβ,

where β = −1.

Assumption 4.3. The function N 	→ p(N) decreases to 0 and N 	→ σ 2(N)/N2p(N) is
ultimately decreasing and satisfies ∫ ∞

1

σ 2(x)

x2p(x)
dx < ∞.

Assumption 4.4. For K > 0 and C ≥ 0,

0 < p(N) < 1.
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Let {an}n be the increasing sequence defined by a0 = 1 and, for n ≥ 1,

an = an−1(1 + f (S(an−1)S
−1)). (4.1)

Then an = (1 + p)n for n ≤ ns.
Using Kersting’s result [8], the process satisfies limn→∞ Nna

−1
n = 1 almost surely.

Furthermore, as in Jagers and Klebaner’s paper [7], (4.1) implies that

an

n
= a0

n
+ 1

n

n∑
k=1

ak−1f (S(ak−1)S
−1). (4.2)

According to Kersting, limk→∞ ak = ∞, implying that limk→∞ ak−1f (S(ak−1)S
−1) = KC .

Then, thanks to the Toeplitz lemma, (4.2) implies that limn→∞ ann
−1 = KC . Consequently,

limn→∞ Nnn
−1 = KC almost surely, entailing that Nn = KCn + o(n), which is consistent

with the linear part of the saturation phase. Hence, this model asymptotically fits the linear part
of the saturation phase.

5. Estimation of the efficiency

We estimate the unknown parameters KC , S and C in (3.4) and therefore the efficiency
p = K(K + S)−1 = µ(µ + 1)−1 of the exponential phase from a single PCR trajectory by
using the nonlinear autoregressive model deduced from (3.1):

Nk = m(Nk−1)Nk−1 + ηk, m(Nk−1) = 1 + f (S(Nk−1)S
−1), (5.1)

where the mean and variance of ηk conditionally on Nk−1 are

E(ηk | Nk−1) = 0, σ 2(ηk | Nk−1) = Nk−1σ
2(Nk−1). (5.2)

According to (3.5),

σ 2(ηk | Nk−1) = Nk−1

(
KC

S(Nk−1)
− r+(S(Nk−1))

)
.

In order to define the optimal estimator not only from an asymptotic point of view but also from
a finite-distance point of view, we generalize the optimal contrast with weights {N−1

k−1N
−β
k−1}k ,

which were defined in [11] for studying only the asymptotic properties, by taking into account
the dependence of σ 2(ηk | N) on S(N). The estimator of (KC, S, C) will therefore minimize
the following conditional least-squares equation:

SSh,n(KC, S, C) =
n∑

k=h+1

(Nk − (1 + f (S(Nk−1)S
−1))Nk−1)

2
N−1

k−1S(Nk−1)
−β, (5.3)

where β = −1. Let

((K̂C)h,n, Ŝh,n, Ĉh,n) = arg min
KC,S,C

SSh,n(KC, S, C).
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Since S is unknown, we replace the weights S(Nk−1)
−β of the contrast (5.3) by the weights

Ŝ(Nk−1)
−β , where S is estimated by Nns . Therefore, (5.3) becomes

SSh,n(KC, S, C) =
ns∑

k=h+1

(Nk − (1 + f (1))Nk−1)
2N−1

k−1Nns

+
n∑

k=ns+1

(Nk − (1 + f (Nk−1S
−1))Nk−1)

2 (5.4)

and (5.4) is asymptotically equivalent to (5.3). The amplification-rate model (3.4) satisfies
Assumption 1.1′ of [11]: m(N) = 1 + KC(S(N))−1 + O(S(N)−ᾱ), where ᾱ = 2. But
according to (3.4) and the results of [11] obtained in the general context of size-dependent
branching processes, the consistency of {((K̂C)h,n, Ŝh,n, Ĉh,n)}n needs at least the asymptotic
identifiability of (KC, S, C) in m(·) at the rate Nᾱ

k−1 and requires that β +2ᾱ ≤ 1, which is not
the case since β = −1 and ᾱ = 2. According to (3.4), KC is identifiable at the rate Nα

k−1 with
α = 1 and (S, C) appears only in the negligible functions r(·) and r+(·). Therefore, we will
study the properties of {(K̂C)h,n}n and we will consider {(Ŝh,n, Ĉh,n)}n as a nuisance parameter,
which we denote by ν. We write SSh,n,ν(θ) instead of SSh,n(KC, S, C), where θ = KC ; we
are studying the properties of the estimator of the parameter θ . We have

θ̂h,n,ν = arg min
θ

SSh,n,ν(θ). (5.5)

Our asymptotic study concerns n → ∞. Notice that, in the PCR setting, n → ∞ entails that
Nn → ∞ almost surely.

We assume that θ = KC belongs to a compact set � in R
+ \ {0} and θ0 ∈ ◦

�. Set Ŝ(ak−1) =
ans = (1 + p)ns for all k ≤ ns and Ŝ(ak−1) = ak−1 for all k ≥ ns + 1.

Let

	−1
h,n(ns) =

√√√√ n∑
k=h+1

ak−1Ŝ(ak−1)−β−2α =
√√√√ ns∑

k=h+1

(1 + p)k−1−ns + n − ns.

Proposition 5.1. Let h be fixed. Then limn→∞ θ̂h,n,ν = KC almost surely and

lim
n→∞ 	−1

h,n(ns)(θ̂h,n,ν − KC)
D= N(0, KC). (5.6)

Remark 5.1. As a direct consequence, when S is known, this result allows us to construct a
confidence interval for p = µ(µ + 1)−1 or a test of equality of the efficiencies of two trajectories
since (5.6) implies that

lim
n→∞ 	−1

h,n(ns)((µ̂C)h,n,ν − µC)
D= N(0, µCS−1), (5.7)

where µC = KCS−1. According to (5.7), the larger is S, the better is the accuracy of p̂h,n,ν .
For example, for the amplification well 21 of data set 1 (see Section 6), if SF is assumed
known (SF = (ŜF )h,n), we obtain the following approximate 95% confidence interval for p:
[0.8435983, 0.8435994].
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Proof. First, notice that, since S is fixed, ns is almost surely finite since limn→∞ Nn = ∞
almost surely. Second, notice that, since the contrast SSh,n,ν(θ) is a generalization of the
contrast studied in [11], in Conditions 3.7, 3.8, 4.1–4.3 of [11], we can replace the quantities
a

β
k−1, a

α∗
k−1 and a

α∗∗
k−1 by the quantities Ŝ(ak−1)

β , Ŝ(ak−1)
α∗ and Ŝ(ak−1)

α∗∗ in order to prove
the consistency and the rate of convergence of the estimators, where α∗ = α and α∗∗ = ᾱ.

To get the strong consistency, we apply Corollary 3.1 of [11] since the contrast SSh,n,ν(θ)

is asymptotically equivalent on each trajectory to the contrast where the weights are N
−1−β
k−1 .

The model (3.4) satisfies Conditions 3.6 and 3.7 of [11] for γ = 1 + β and h fixed, leading to
the strong consistency of {θ̂h,n,ν}n, since

sup
ν

sup
θ

|rθ,ν(N)|N2 < ∞, where rθ0,ν(N) = r(N) (proving Condition 3.6 of [11]),

lim
n→∞

ns∑
k=h+1

(1 + p)k−1−ns + n − ns = ∞ (proving Condition 3.7(i) of [11]),

∞∑
k=ns+1

[ ns∑
l=h+1

(1 + p)l−1−ns + k − ns

]−2

< ∞ (proving Condition 3.7(ii) of [11]).

Let us now prove (5.6). In view of (3.5), σ 2(N) = KCNβ − r+(N) for N large enough,
where β = −1 and r+(N) defined in (3.6) is such that 0 ≤ r+(N) = O(Nβ̄) with β̄ = −2;
this is Assumption 1.2′ of [11].

Let us check the Conditions 3.8 and 4.1–4.3 of [11] to get the rate of convergence on the set
{ns = l}:

1. Condition 3.8. For all N ,

sup
θ,ν

|r ′
θ,ν(N)|N2 < ∞ and sup

θ,ν

|r ′′
θ,ν(N)|N2 < ∞,

where ′ denotes the derivative with respect to θ = KC .

2. Condition 4.1. Letting

Bn =
√√√√ n∑

k=h+1

ak−1Ŝ(ak−1)−β−2α,

we have

lim
n→∞ Bn = lim

n→∞

√√√√ ns∑
k=h+1

(1 + p)k−1−ns + n − ns = ∞.

3. Condition 4.2. We have

lim
n→∞

[ n∑
k=ns+1

a−1
k−1

][ ns∑
k=h+1

(1 + p)k−1−ns + n − ns

]−1/2

= 0.

Since an = KCn + o(n),∑n
k=ns+1 a−1

k−1√∑ns
k=h+1 (1 + p)k−1−ns + n − ns

≤ sup
k

∣∣∣∣ 1

KC + o(k)/k

∣∣∣∣
∑n−1

k=ns
k−1

√
n − ns

.
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Now
n−1∑
k=ns

1

k
≤

∫ n−1

ns−1

dt

t
≤ log (n − 1) − log (ns − 1).

Thus, for fixed h,

lim
n→∞

∑n−1
k=ns

k−1

√
n − ns

= 0,

as required.

4. Condition 4.3. For all x ∈ R,

lim
n→∞ sup

ns+1≤k≤n

E(R2
k 1{R2

k≥B2
k,nx2} | Fk−1) = 0

almost surely, where Rk = Ȳkp
′(Nk−1)Nk−1a

1/2
k−1, Ȳk = Yk,1 −1−p(Nk−1) and Bk,n =

Bna
1/2
k−1. Let gν(x) = (exp(−C(xS−1 − 1)) + 1)/2; then

p′(Nk−1) = 2Nk−1(1 + δC)

(2KC + Nk−1(1 + δC))2 gν(Nk−1).

Since p′(Nk−1)Nk−1 ≤ 2 and Ȳ 2
k ≤ 1, we have R2

k ≤ 4ak−1, yielding that, for all x ∈ R,

sup
ns+1≤k≤n

E(R2
k 1{R2

k≥B2
k,nx2} | Fk−1) ≤ 4an−1P(4 ≥ B2

nx2).

On the set {ns = l}, P(4 ≥ B2
nx2) = 0 for all n large enough since limn→∞ Bn = ∞,

implying that
lim

n→∞ sup
ns+1≤k≤n

E(R2
k 1{R2

k≥B2
k,nx2} | Fk−1) = 0

almost surely, as required.

Then, according to Proposition 4.1 of [11], on the set {ns = l}, (5.6) holds.
In view of Corollary 3.4.34 of [1], limn→∞ 	−1

h,n(ns)(θ̂h,n,ν − θ0)
D= N(0, θ0) is equivalent

to limn→∞ P(	−1
h,n(ns)(θ̂h,n,ν − θ0) ≤ x) = P(X ≤ x) for all real x, where X

D= N(0, θ0).
Then∣∣∣∣P(	−1

h,n(ns)(θ̂h,n,ν − θ0) ≤ x) −
N∑

l=0

P(	−1
h,n(ns)(θ̂h,n,ν − θ0) ≤ x | ns = l) P(ns = l)

∣∣∣∣
≤

∞∑
l=N+1

P(	−1
h,n(ns)(θ̂h,n,ν − θ0) ≤ x | ns = l) P(ns = l)

≤ P(ns > N).

But
lim

n→∞
∑
l≤N

P(	−1
h,n(ns)(θ̂h,n,ν − θ0) ≤ x | ns = l) P(ns = l)

=
∑
l≤N

lim
n→∞ P(	−1

h,n(ns)(θ̂h,n,ν − θ0) ≤ x | ns = l) P(ns = l)

= P(X ≤ x) P(ns ≤ N).
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This yields that∣∣∣ lim
n→∞ P(	−1

h,n(ns)(θ̂h,n,ν − θ0) ≤ x) − P(X ≤ x) P(ns ≤ N)

∣∣∣ ≤ P(ns > N).

The right-hand side of the last inequality tends to 0 as N → ∞ since ns is almost surely
finite on the nonextinction set. As a consequence, limn→∞ P(	−1

h,n(ns)(θ̂h,n,ν − θ0) ≤ x) =
P(X ≤ x) limN→∞ P(ns ≤ N) = P(X ≤ x) and (5.6) is valid.

6. Study of the efficiency estimator at finite distances

We study the behavior of the estimator of the efficiency at finite distances using simulations
and real PCR data.

The random variable
∑Nn

i=1(Yn+1,i −1) has a binomial distribution, with parameters Nn and
p(Nn), denoted by bin(Nn, p(Nn)). This entails that Nn+1 is given by the recursion formula

Nn+1 = Nn + bin(Nn, p(Nn)).

To reproduce a sequence of real observations {Fn/Fn−1}n, we add noise to the size-dependent
branching process: Xk = Nk + εk , where {εk}k is assumed to be independent of {Nk}k and is a
sequence of i.i.d. centered Gaussian random variables with variance σ 2

ε . The simulations were
implemented in MATHEMATICA® (Wolfram Research Inc.).

6.1. Study of the bias and the variance of the estimator

Simulations in the context of the efficiency model (3.3) were performed with N0 = 1000,
K = 4 × 1010, S = 1010, C = 0 and either σε = 0 or σε = 4 × 107. The true efficiency of
the exponential phase is p = 0.8. For each of these sets of parameter values, 500 trajectories
of the process were simulated up to cycle 40. The series of p̂h,n,ν = K̂h,n,ν/(K̂h,n,ν + Ŝh,n)

were computed for each trajectory and the empirical mean and variance of the estimator were
calculated over the 500 trajectories all satisfying ns = 28 for different h and n (see Tables 1
and 2). We chose h large enough for Xh to be above the background noise.

Considering the non-noisy set of simulations, the bias equals zero and the variance is of
maximum order 10−11. With the noisy simulations, the bias is smaller than 10−3 and the
variance is a bit greater than in the non-noisy simulations. The comparison of the quantities
of Tables 1 and 2 for sets of observations in different phases and such that n − h = 4 shows
that the estimator is a bit better in the saturation phase, whereas the increasing of n − h due

Table 1: Mean and variance when N0 = 1000, p = 0.8, C = 0, σε = 0.

h n E(p̂h,n,ν) var(p̂h,n,ν)

24 28 0.8 1.08654 × 10−11

26 30 0.8 2.61273 × 10−12

28 32 0.8 8.80084 × 10−13

h n E(p̂h,n,ν) var(p̂h,n,ν)

24 28 0.8 1.08654 × 10−11

24 30 0.8 2.46202 × 10−12

24 32 0.8 8.53060 × 10−13

Table 2: Mean and variance when N0 = 1000, p = 0.8, C = 0, σε = 4 × 107.

h n E(p̂h,n,ν) var(p̂h,n,ν)

24 28 0.799818 3.80016 × 10−5

26 30 0.800019 1.78158 × 10−6

28 32 0.799991 1.18139 × 10−7

h n E(p̂h,n,ν) var(p̂h,n,ν)

24 28 0.799818 3.80016 × 10−5

24 30 0.799958 1.90581 × 10−6

24 32 0.799988 1.23439 × 10−7
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to the use of the saturation phase allows us to increase the accuracy of the estimator. The fact
that the bias and variance are very small and decrease as n increases, with n − h remaining
fixed and small, may be explained by the large amount of molecules replicated in the cycles we
have considered so that the strong law of large numbers due to the almost-sure convergence of
Nna

−1
n with limn→∞ an = ∞ and the almost-sure convergence to 0 of εna

−1
n play a significant

role at each cycle. Furthermore, relying only on the first five observations of the saturation
phase of the noisy simulations ((h, n) = (28, 32)), the standard deviation of p̂h,n,ν is less than
10−3: we get an accurate estimation of p based only on the beginning of the saturation phase.

6.2. Study of the estimator accuracy on single trajectories

We study the efficiency estimator on single trajectories based on the estimation model (3.4).
These trajectories will be either simulation trajectories described in Subsection 6.1 or real PCR
amplification trajectories. While considering real PCR data, we will study two data sets; data
set 1 was described in [18] and data set 2 was provided by the Laboratory of Phytopathology
and Methodology of Detection, INRA.

Let

SSh,n(KC, S, C) = SSh,n(KC, S, C)

n − h
,

where SSh,n(KC, S, C) is defined by (5.4). From a theoretical point of view, we should
normalize the contrast with

∑ns
k=h+1 (1 + p)k−1−ns + n − ns, but, since this quantity depends

on unknown parameters, we use the normalization n − h. Let [h0, n0] be a large window of
reliable observations. We search for the largest window [h, n] ⊂ [h0, n0] such that the model
is adequate, i.e. SSh,n((K̂C)h,n, Ŝh,n, Ĉh,n) is minimum among the set

{SSh′,n′((K̂C)h′,n′ , Ŝh′,n′ , Ĉh′,n′)}
h0≤h′<n̂

obs,graph
s <n′≤n0

, (6.1)

where n̂
obs,graph
s is a graphical estimation of the end of the exponential phase defined as the first

cycle of the decrease of ten consecutive values of the simple estimator of the amplification rate
{Xk/Xk−1}k [17]. We set h0 = sup{k : Xk−1 < 0} since the values of the measurements of the
emitted fluorescence have a meaning only when they are positive. Taking [h, n] to realize the
minimum of (6.1), we will estimate ns = sup{k : Xk−1 < S} by n̂s = sup{k : Xk−1 < Ŝh,n}.
6.2.1. Simulation and estimation using the model (3.4) with C = 0. Let (h0, n0) = (26, 35).
Then (h, n) = (h0, n0) = (26, 35), which is consistent with the increase of the accuracy
estimator as the number of observations increases when the estimation model is valid on all of
the trajectory. We have K̂h,n,ν = 4.00311 × 1010 and Ŝh,n = 1010. In Figure 1, the dotted line
is the plot of Xk/Xk−1 − 1 versus k and the solid line is the plot of the estimation of p(Xk−1)

versus k. We obtain a very accurate estimation of the efficiency.

6.2.2. Real PCR data with the estimation model (3.4). We study the two experimental data sets.
We recall that Fk , which is the measured fluorescence at cycle k, is assumed proportional to
Nk . For h and n realizing the minimum of (6.1), the dotted line in Figures 2 and 3 plots the
estimation of the observed efficiency Fk/Fk−1 −1 versus k and the solid line plots the estimated
efficiency p̂(Fk−1) versus k, where p̂(Fk−1) is the estimation of the efficiency model p(Fk−1).
We get an accurate estimation of the efficiency from the end of the exponential phase until the
linear phase of the saturation, and then there is an over-estimation in the plateau phase.

Figure 2 gives the results obtained for well 21 of data set 1 ((h0, n0) = (14, 29)) and Figure 3
gives the results for well 16 of data set 2 ((h0, n0) = (17, 30)). Denote K̂h,n,ν and Ŝh,n when
expressed in fluorescence units by (K̂F )h,n,ν and (ŜF )h,n respectively.
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Figure 1: Simulation, with h = 26, n = 35, p̂h,n,ν = 0.800125.
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Figure 2: Well 21 of data set 1, with h = 21, n = 25, n̂s = 23, (K̂F )h,n,ν = 0.38055, (ŜF )h,n =
0.070553, Ĉh,n = 0.6, p̂h,n,ν = 0.843599.
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Figure 3: Well 16 of data set 2, with h = 22, n = 29, n̂s = 25, (K̂F )h,n,ν = 0.254064, (ŜF )h,n =
0.0935645, Ĉh,n = 0.07, p̂h,n,ν = 0.730849.
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Figure 4: Well 21 of data set 1, with h = 23, n = 27, (K̂F )h,n,ν = 0.22769.
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Figure 5: Well 16 of data set 2, with h = 22, n = 29, (K̂F )h,n,ν = 0.216718.

6.2.3. Real PCR data with the estimation model (1.1). In the efficiency model (1.1), the only
unknown parameter is K . We observe a systematic bias which consists in an under-estimation of
the rate of decrease of the efficiency at the beginning of the saturation phase of the model (3.4).
Furthermore, as in Section 6.2.2, there is an over-estimation in the last cycles of the saturation
phase (plateau phase). But the fit is relatively good for the other cycles, which validates the
efficiency model studied by Jagers and Klebaner [7].

Figure 4 gives the result for well 21 of data set 1 and Figure 5 that for well 16 of data set 2.
Other estimations relying on simulations and real PCR data can be found in [12].

7. Conclusion

To conclude, we give some prospectives about possible use of this work. It would be
interesting to test the equality between efficiency of different amplification trajectories using
the law of (µ̂C)h,n,ν given in Section 5 in order to validate or invalidate the basic assumption
of equality of all the efficiencies for trajectories realized at the same time with the same
measuring apparatus. More accurate results would need the knowledge of the distribution
of the measurement error. The confidence interval of p that is less than 10−5 (see Remark 5.1),
calculated under the assumptions of null measurement error and knowledge of SF , is consistent
with the observed variance of p̂h,n,ν (Table 1). Therefore, according to Table 2, we may expect
for real PCR data a confidence interval of maximum order 10−3.
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Relying on the modelling of the exponential phase by a supercritical Bienaymé–Galton–
Watson process, Jacob and Peccoud [5] built an asymptotic confidence interval of N0, as
n → ∞. Since, for real-time PCR data, the observed fluorescence is less noisy in the saturation
phase, it would be interesting to extend the results obtained in [5] to an estimator F̂0,n of F0
with n belonging to the linear phase. When a calibration function making the conversion
of fluorescent units into DNA molecules number is available, the confidence interval for F0
would entail a confidence interval for N0. Notice that relative quantitative PCR between two
populations is now possible thanks to the relationship F̂

(1)
0,n1

/F̂
(2)
0,n2

= N̂
(1)
0,n1

/N̂
(2)
0,n2

.
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