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Systematic discovery of structural elements
governing stability of mammalian messenger RNAs
Hani Goodarzi1,2{, Hamed S. Najafabadi3,4{, Panos Oikonomou1,2{, Todd M. Greco2, Lisa Fish5, Reza Salavati3,4,6, Ileana M. Cristea2

& Saeed Tavazoie1,2{

Decoding post-transcriptional regulatory programs in RNA is a
critical step towards the larger goal of developing predictive
dynamical models of cellular behaviour. Despite recent efforts1–3,
the vast landscape of RNA regulatory elements remains largely
uncharacterized. A long-standing obstacle is the contribution of
local RNA secondary structure to the definition of interaction
partners in a variety of regulatory contexts, including—but not
limited to—transcript stability3, alternative splicing4 and local-
ization3. There are many documented instances where the presence
of a structural regulatory element dictates alternative splicing
patterns (for example, human cardiac troponin T) or affects other
aspects of RNA biology5. Thus, a full characterization of post-
transcriptional regulatory programs requires capturing informa-
tion provided by both local secondary structures and the
underlying sequence3,6. Here we present a computational frame-
work based on context-free grammars3,7 and mutual information2

that systematically explores the immense space of small structural
elements and reveals motifs that are significantly informative of
genome-wide measurements of RNA behaviour. By applying this
framework to genome-wide human mRNA stability data, we reveal
eight highly significant elements with substantial structural
information, for the strongest of which we show a major role in
global mRNA regulation. Through biochemistry, mass spectro-
metry and in vivo binding studies, we identified human HNRPA2B1
(heterogeneous nuclear ribonucleoprotein A2/B1, also known as
HNRNPA2B1) as the key regulator that binds this element and
stabilizes a large number of its target genes. We created a global
post-transcriptional regulatory map based on the identity of the
discovered linear and structural cis-regulatory elements, their
regulatory interactions and their target pathways. This approach
could also be used to reveal the structural elements that modulate
other aspects of RNA behaviour.

To isolate stability from other aspects of mRNA behaviour, we
performed whole-genome mRNA stability measurements by incub-
ating human MDA-MB-231 breast cancer cells in the presence of
4-thiouridine, which is efficiently incorporated into cellular RNA.
Subsequently, 4-thiouridine-labelled transcripts were captured and
quantified at different time-points after the removal of 4-thiouridine
from the growth medium. We calculated a relative decay rate for each
transcript based on the rate at which 4-thiouridine-labelled transcripts,
in the absence of 4-thiouridine in the media, are replaced by newly
synthesized unlabelled mRNAs in the population (Supplementary Fig. 1).
These measurements were then used to identify the putative cis-
regulatory elements (linear and structural) that underlie transcript
stability. A number of methods have been previously introduced for
discovering structural motifs mainly based on free energy minimiza-
tion, local sequence alignments or a combination of both alignments
and secondary structure predictions3,6,8. However, the extent to which

these in silico predictions reflect stable in vivo molecular conforma-
tions has not been fully explored9. In fact, the RNA binding proteins
and complexes that interact with their target transcripts may facilitate
the formation of secondary structures in vivo. Thus, we sought to
bypass the need for predicting thermodynamically stable secondary
structures by efficiently enumerating a large space of potential struc-
tural motifs. We developed TEISER (Tool for Eliciting Informative
Structural Elements in RNA), a framework for identifying the struc-
tural motifs that are informative of whole-genome measurements
across all the transcripts. In this approach, structural motifs are defined
in terms of context-free grammars7 (CFGs) that represent hairpin
structures as well as primary sequence information (see Methods
and Supplementary Fig. 2). TEISER employs mutual information to
measure the regulatory consequences of the presence or absence of
each of roughly 100 million different seed CFGs (see Methods).
Mutual information is a robust non-parametric measure that reveals
general dependencies across discrete or continuous measurements2,10.
For example, when applied to the transcript stability data, TEISER
captures the dependency between the stability of each mRNA and
the presence or absence of a given structural motif in its 59 and 39
untranslated regions (UTRs). TEISER, subsequently, uses these mea-
surements to choose and further refine the most informative motifs,
and performs a series of statistical tests—for example, randomization-
based statistics and jackknifing tests—to achieve very low (,0.01)
false-discovery rates (see Methods and Supplementary Fig. 2).

Application of TEISER to the mRNA stability measurements in
MDA-MB-231 cells revealed eight strong structural motif predictions
that passed our statistical tests aimed at finding the most likely ele-
ments causally involved in mRNA stability (Fig. 1 and Supplementary
Fig. 3). Apart from being highly informative of mRNA stability mea-
surements, these putative regulatory elements show a variety of other
characteristics that support their functionality. For example, four of
the discovered motifs are also informative of transcript stability mea-
surements in mouse11 (Supplementary Fig. 4a). Furthermore, these
motifs are highly conserved between human and mouse genomes
(see Methods and Supplementary Fig. 3) and are also informative of
co-expression clusters discovered across independent whole-genome
data sets (Supplementary Fig. 4b).

Among the putative structural motifs discovered by TEISER, we
chose sRSM1 (structural RNA stability motif 1)—the most statistically
significant 39 UTR element (z-score 5 122)—for further analysis. In
order to probe the functionality of sRSM1 instances across the genome,
we performed in vivo titration experiments using synthetic oligonu-
cleotides10,12. Upon transfecting MDA-MB-231 cells with decoy RNA
molecules harbouring sRSM1 instances (Supplementary Fig. 5), we
observed a notable reduction in the level of endogenous transcripts
that carried this motif, in comparison to their level in the control
cells transfected with scrambled RNA molecules (Fig. 2). This global
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downregulation points to the presence of a trans-acting factor that,
upon interaction with sRSM1, stabilizes its target transcripts. The
decoy (synthetic) sRSM1 elements compete with endogenous

mRNAs for the putative trans-acting factor, which results in the
observed reduction in the level of its target mRNAs. Furthermore,
reporter constructs carrying instances of sRSM1 showed a marked
decrease in transcript decay rate in comparison to scrambled controls,
further suggesting a direct role for this structural element in transcript
stability (Supplementary Fig. 6).

We used streptomycin-binding RNA aptamer immobilization
coupled with mass spectrometry13 to discover candidates that bind,
in vitro, to the decoy instances of sRSM1, but not to the scrambled
versions (Supplementary Fig. 7). After isolation under stringent con-
ditions and in-solution digestion of RNA-bound proteins followed by
nanoliquid chromatography-tandem mass spectrometry, we identified
HNRPA2B1 as a promising candidate (Supplementary Table 1). This
RNA-binding protein is a member of the A/B subfamily of heterogen-
eous nuclear ribonucleoproteins (hnRNPs)14 and carries two repeats of
quasi-RNA-recognition motif (qRRM) RNA binding domains
(Supplementary Fig. 8). Moreover, the established roles of other
members of this family, namely HNRNPD and HNRNA1, in regulat-
ing RNA stability15 and binding terminal stem-loops16 further suggest
HNRPA2B1 as a functional regulator. Also, more than 4,000
transcripts carry potentially functional instances of sRSM1 (see
Methods), implicating this motif as a major global regulator of
mRNA stability. The HNRPA2B1 transcript, at the same time, is highly
abundant in the cell (one standard deviation higher than average17),
thus making it a promising candidate for global modulation of mRNA
stability through sRSM1.
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Figure 1 | Discovery of RNA structural motifs informative of genome-wide
transcript stability. Each RNA structural motif is shown (far right) along with
its pattern of enrichment/depletion across the range of mRNA stability
measurements throughout the genome (far left). The panel labelled mRNA
stability measurements shows how the transcripts are partitioned into equally
populated bins based on their stability measures, going from left (highly stable)
to right (unstable). In the heatmap representation, a gold entry marks the
enrichment of the given motif in its corresponding stability bin (measured by
log-transformed hypergeometric P-values), while a light-blue entry indicates
motif depletion in the bin. Red and blue borders mark highly significant motif
enrichments and depletions, respectively. From left to right, we show the motif

names, their location (UP for 59 UTR and DN for 39 UTR), their sequence
information (‘motif’, in the form of an alphanumeric plot), their associated
mutual information values (MI; see below), their frequency (the fraction of
transcripts that carry at least one instance of the motif), and their z score (see
below). Each MI value is used to calculate a z score, which is the number of
standard deviations of the actual MI relative to MIs calculated for 1.5 million
randomly shuffled stability profiles. A structural illustration of each motif is
also presented (far right) using the following single letter nucleotide code:
Y 5 [UC], R 5 [AG], K 5 [UG], M 5 [AC], S 5 [GC], W 5 [AU], B 5 [GUC],
D 5 [GAU], H 5 [ACU], V 5 [GCA] and N 5 any nucleotide.
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Figure 2 | The regulatory role of sRSM1. Whole-genome expression levels
were measured in decoy-transfected samples relative to the controls transfected
with scrambled RNA molecules (see Methods). The measurements were
performed in duplicate, for two independent decoy/scrambled sets (the relative
transcript levels were subsequently averaged across the two replicates in each
set). Genes were sorted and quantized into equally populated bins based on the
average log-ratio of their expression levels in the decoy samples relative to the
scrambled controls. TEISER was used to show the enrichment/depletion
patterns of transcripts harbouring sRSM1 in their 39 UTRs. From left to right,
we also show motif name, sequence, MI values and the associated z scores.
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In order to directly assess the regulatory consequences of modulat-
ing HNRPA2B1, we performed knock-down experiments followed by
gene expression profiling. Consistent with our prior observations,
HNRPA2B1 knock-down caused a significant decrease in the expres-
sion level of transcripts carrying sRSM1 (Fig. 3a). Stability measure-
ments in the knock-down cells confirmed that the observed
downregulation of these transcripts was in fact due to changes in
stability (see Methods), with the transcripts carrying sRSM1 elements
showing a marked increase in their corresponding relative decay rates
(Fig. 3b).

In principle, our observations are consistent with a possible indirect
role for HNRPA2B1—brought about, for instance, by a common partner
that binds both HNRPA2B1 and sRSM1 sites. The direct interaction
between HNRPA2B1 and its potential target genes can be tested
through cross-linking and immunoprecipitation of HNRPA2B1,

which, through local ultraviolet photoreactivity of bases and amino
acids, can detect direct physical interactions18. We expressed a tagged
clone of HNRPA2B1 in MDA-MB-231 cells, and after ultraviolet-
crosslinking, immunoprecipitated this protein and the target mRNA
molecules that were bound to it. We then labelled the isolated RNA
population and hybridized it to microarrays with the input total RNA
as control (a method called RIP-chip19). We observed a highly signifi-
cant enrichment of sRSM1 in the immunoprecipitated population
(Fig. 3c). In order to reduce the background and better pinpoint the
HNRPA2B1 binding sites, we treated the samples with nuclease before
immunoprecipitation under denaturing conditions and sequenced the
HNRPA2B1-bound RNA population (HITS-CLIP20). We observed that
sRSM1 elements were significantly enriched in the identified putative
binding sites, in comparison with randomly selected sequences21

(Fig. 3d). These observations demonstrate that HNRPA2B1 directly
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Figure 3 | HNRPA2B1 stabilizes transcripts through direct in vivo binding
to sRSM1 structural motifs. a, Genome-wide expression levels were measured
in HNRPA2B1 siRNA-transfected samples relative to mock-transfected
controls. TEISER was used to capture the enrichment/depletion pattern of
transcripts carrying sRSM1 across the relative expression values. Experiments
were performed in triplicate, each with an independent siRNA targeting
HNRPA2B1 and the resulting log ratios were averaged for each transcript.
b, Transcript decay rates were compared in HNRPA2B1 knock-downs versus
mock-transfected controls. These measurements were then analysed by
TEISER to visualize the extent to which the decay rates of transcripts carrying
sRSM1 elements were increased following HNRPA2B1 knock-down. c, Using
ultraviolet-crosslinking followed by immunoprecipitation, mRNAs that bind

HNRPA2B1 were extracted and compared against the input mRNA population
(RIP-chip). The log ratio calculated for each mRNA denotes its abundance in
the immunoprecipitated sample relative to the input control. Bins to the right
contain the mRNAs that were captured as interacting partners with
HNRPA2B1. Similar to the prior examples, TEISER was used to show the
enrichment/depletion pattern of transcripts carrying sRSM1 in their 39 UTRs.
The values associated with each transcript were calculated as the average of log
ratios from biological replicates. d, HNRPA2B1 binding sites were identified
using immunoprecipitation followed by high-throughput sequencing (HITS-
CLIP). Instances of the sRSM1 element are significantly enriched in these sites
relative to a population of random sequences from 39 UTRs that are not
represented in the sequenced population.
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interacts with sRSM1 in vivo and acts to stabilize its target transcripts
through this regulatory element. These transcripts, in turn, modulate a
variety of cellular processes and pathways. For example, we observed a
significant positive correlation between sRSM1 target transcripts and
doubling-time in NCI-60 breast cancer cell lines (Fig. 4a). Indeed,
knocking-down HNRPA2B1 resulted in a slight but significant
increase in growth rate (by 10%, P-value ,1028), further highlighting
the regulatory role of this global modulator in a key cellular process
(Fig. 4b).

Revealing the detailed post-transcriptional regulatory code relies on
the discovery of all the cis-regulatory elements that contribute to
changes in transcript abundance. In addition to the sRSMs identified
through TEISER, we also discovered a large diverse set of lRSMs (linear
RNA stability motifs), including six known microRNA recognition
sites, that are informative of transcript stability measurements
(Supplementary Fig. 9). These motifs were identified by FIRE2

(Finding Informative Regulatory Elements), a framework for discover-
ing informative linear motifs. Combining these two approaches pro-
vided us with an extensive set of putative regulatory elements that
cover both structural and primary sequence components. The next
step in deciphering the post-transcriptional regulatory program
involves the identification of target pathways that are potentially
modulated by each element. Using iPAGE10 (Pathway Analysis of
Gene Expression), we showed that our discovered elements probably
target a diverse array of cellular processes and pathways (Supplemen-
tary Fig. 10). For example, the sRSM1 structural element is signifi-
cantly enriched in the 39 UTRs of the genes involved in ‘Notch
signalling’, while avoiding the UTRs of other pathways such as ‘nucleo-
some assembly’ (Supplementary Fig. 11). These results demonstrate
that while post-transcriptional regulatory mechanisms are poorly

characterized, they have potentially far-reaching impact on specific
cellular processes.

Regulatory programs often employ combinatorial interactions
between various cis-regulatory elements to modulate gene expres-
sion2,22. We used mutual information to reveal such potential inter-
actions in the post-transcriptional regulatory programs governing
mRNA stability (Supplementary Figs 12 and 13). For example,
sRSM1 showed significant interactions with a number of structural
and linear motifs, including sRSM8 and sRSM3 (Supplementary Fig. 11).
These observed interactions might reflect cross-talk, or insulation,
between the underlying regulatory processes that act upstream of these
elements. The full map of such interactions (Supplementary Figs 14
and 15) reveals a complex network of motif-pathway relationships that
set the stage for molecular dissection and predictive modelling of post-
transcriptional regulation from sequence.

Whereas we have studied mRNA stability under normal and static
conditions in a single cell line, the full regulatory program that governs
mRNA stability is likely to involve a much richer repertoire of cis-
regulatory elements operating within a more complex regulatory net-
work. Also, although we have focused on transcript stability, our
framework is general in concept and can be employed to study
regulatory programs governing other aspects of RNA biology. For
example, the established role of local secondary structures in shaping
the splicing code4,23 suggests alternative splicing as a prominent area
for analysis using this framework. The large repertoire of publicly
available whole-genome expression data sets similarly offers a rich
resource for identifying the post-transcriptional regulatory modules
that underlie steady-state measurements.

METHODS SUMMARY
TEISER relies on calculating mutual information (MI) values between whole-
genome measurements and millions of predefined structural motifs. The statist-
ically significant motifs are then optimized and elongated through a heuristic
search algorithm. The mRNA stability measurements were performed using a
previously published method1. The decoy/scrambled experiments and siRNA
knock-downs were performed using lipofectamin 2000 reagent (Invitrogen). For
hybridizations, we used human 4 3 44k whole-genome human arrays (Agilent).
Isolation and identification of RNA-binding proteins were based on previously
published protocols13,24. HNRPA2B1 target transcripts were isolated based on the
CLIP protocol18.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 4 | HNRPA2B1 regulates growth rate. a, Whole genome expression
levels across five breast cancer cell lines (MCF7, MDA-MB-231, HS578T, BT-
549 and T47D) were correlated against their doubling times17. The resulting
values, ranging from 21 to 1, were analysed by TEISER to probe the
enrichment/depletion pattern of transcripts carrying sRSM1. b, The growth of
HNRPA2B1 siRNA-transfected samples was compared to those of mock-
transfected controls. For each time-point, the number of cells in four
independent samples was counted in duplicates (n 5 8), yielding an estimated
growth-rate (a). Shown are the average log-ratios, their standard deviation at
each time-point, and the statistical significance of the observed difference in
growth-rate.
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METHODS
TEISER: detailed description of the algorithm. Genome profile. A genome
profile is defined across the genes in the genome, where each gene is associated
with a unique measurement. Whole-genome measurements, discrete or continu-
ous, can be obtained from a variety of experimental or computational sources (for
example, Supplementary Fig. 1).
Structural motif definition. Each structural motif is defined as a series of context-
free statements that define the structure and sequence of the motif (Supplementary
Fig. 2). A context-free grammar is a set of production rules that describes how
phrases are made from their building blocks. Considering a structured RNA
molecule as a phrase, its potential building blocks are the different base pairs
and bulges. Loops can be considered as bulges that happen at the beginning of
phrases. Also, internal loops can be considered as combination of left and right
bulges in the middle of phrases. The context-free grammar that we have used
contains the following production rules: SRS[AUCGN], SR[AUCGN]S,
SR[AUCGN]S[AUCGN]; wherein the first production rule depicts a right bulge,
the second production rule results in a left bulge, and the third production rule
creates a base-pairing. For example, consider the stem loop AAACGCUUU (the
stem region is underlined). Let the symbol S be a non-terminal symbol that stands
for this stem loop; the production rule SRSG adds a G to the 39 end of the
molecule, creating a new S, AAACGCUUUG, which has an unpaired 39-end G.
Next, using the production rule SRGSC, we can add a G to the 59 end and a C to
the 39 end of the molecule and make them pair with each other, again creating a
new S, GAAACGCUUUGC, which can be further expanded in this way. Note that
the G that we added in the previous step has now become a right bulge.
Motif profile. For every given motif, we create a binary vector across all the genes,
in which ‘1’ denotes the presence and ‘0’ denotes the absence of that motif. This
vector is called a motif profile.
Creating seed CFGs. We used, as the seed motifs, an exhaustive set of context-free
statements that represented all possible stem-loop structures that satisfied the
following criteria: stem length of at least 4 bp and at most 7 bp; loop length of at
least 4 nt and at most 9 nt; at least 4 and at most 6 production rules representing
non-degenerate bases (that is, production rules that are not SRSN, SRNS, or
SRNSN); and information content of at least 14 bits and at most 20 bits. The
information content of the motif M, which is represented by n production rules,
was defined as 2log2(pM), wherein pM is the probability that a random sequence of
length l matches the n production rules of motif M, with l being equal to 2 3 n1 1 n2

in which n1 is the number of production rules that represent base pairings and n2 is
the number of production rules that represent bulges (n1 1 n2 5 n).
Quantizing continuous genome profiles. Mutual information is defined for both
continuous and discrete random variables; however, in practice, continuous data
are discretized before calculating the mutual information (MI) values. Our quant-
ization procedure involves using equally populated ‘bins’. Thus, the discretization
step only requires a single parameter, that is, the number of genes in each bin. In
TEISER, we have set the default number of bins to 30 (Ne 5 30). It should be noted
that the results are not sensitive to variations in the value of Ne as long as Ne is .10
and each bin has more than ,100 associated transcripts.
Removing recently duplicated genes. Recently duplicated members of gene
families or transposons often share a significant amount of sequence identity in
their UTRs. They also tend to cross-hybridize on the arrays and show a high
artificial correlation. This would in turn bias our search towards conserved ele-
ments in the UTRs of these genes. In TEISER, similar to FIRE2, we remove the
duplicates that have similar values (for example, fall in the same bin after quant-
ization of the input genome profile). A MegaBlast E-value cutoff of 1 3 10215 was
used to identify duplicates.
Calculating the mutual information values. We performed mutual information (MI)
calculations between the genome profile and the motif profiles using algorithms
introduced and described elsewhere2,10. These algorithms take the necessary steps to
ensure reliable MI calculations (for example, minimum sample sizes for reliable
estimation of joint distributions).
Randomization-based statistical testing. To assess the statistical significance of the
calculated MI values, TEISER uses a non-parametric randomization-based stat-
istical test. In this test, the genome profile is shuffled 1,500,000 times and the
corresponding MI values are calculated. A motif is deemed significant only if
the real MI value is greater than all of the randomly generated ones. In TEISER,
in order to minimize the required number of tests, structural motifs are first sorted
based on the MI values (from high to low) and the statistical test is applied in order.
When 20 contiguous motifs in the sorted list do not pass the test, the procedure is
terminated.
Optimization of the identified seeds into more informative motifs. Our initial
collection of structural motifs, despite being large, is a coarse-grained sampling
of the entire space. Mainly, it provides us with a set of informative seeds that
should be later optimized into closer representations of their actual form2.

Accordingly, all the structural motifs that pass the previous stage are further
optimized and elongated. The process involves: (1) optimization: randomly
choose one of the context-free statements (production rules) from the motif
and convert its sequence information to all possible combinations of nucleotides.
Evaluate all the resulting structural motifs and accept the one that results in the
highest MI value. (2) Elongation: production rules are added to the end of the
context-free phrase that represents the motif, thus extending its effective length in
the form of a base pair or a bulge. The increase in length is similarly accepted only if
it results in a higher MI value.
Removing redundantly informative structural motifs. Motifs that redundantly
represent the same potential cis-regulatory elements are identified and removed
using the concept of conditional information as described before2,10.
Finding robust motifs. TEISER also performs jack-knife resampling to find robust
motifs that are not over-sensitive to the composition of the input data. For each
predicted motif, we perform 10 jackknifing trials where, in each trial, one third of
the genes are randomly removed and the mutual information value and its stat-
istical significance is evaluated. The robustness score is then defined as the number
of trials in which the motif remains significant (scores better in the original
genome profile than in all the randomly shuffled genome profiles) after resam-
pling, ranging from 0/10 to 10/10. By default, TEISER requires the motif to be
significant in more than half of the trials (a robustness score equal to or greater
than 6/10). While this parameter can be changed at the user’s discretion, our
experience with both TEISER and FIRE2 suggests that this threshold results in
very low false discovery rates across a variety of data sets (discrete and continuous).
Patterns of motif enrichment and depletion. For a given motif, a high mutual
information value results from the non-random distribution of its targets across
the input range. This results in significant patterns of enrichment and depletions
across the genome profile, which can be quantified by calculating enrichment/
depletion scores. These scores result from the log transformation of P-values
calculated based on the hypergeometric distribution, as described previously2.
Final statistical tests. In case the genome profile is continuous, one can require
TEISER to return motifs that are enriched at one end of the data range or the other
(for example, structural motifs in Fig. 1). TEISER accomplishes this through
calculating the Spearman correlation between the enrichment scores and the
average data value across all the bins. For the structural motifs in Fig. 1, the
P-value threshold for these Spearman correlations was set to 0.001 (for
Supplementary Fig. 3, this value is 0.01 which puts the FDR at 10%). It should
be noted, however, that other statistical tests could be used in this step at the
discretion of the user. The goal, ultimately, is to identify the motifs that show
significant enrichments at either end of the data range.
Inter-species conservation. For each motif, we also calculate a conservation score
based on its network-level conservation with respect to a related genome2. For this,
orthologous transcripts in both genomes are scanned for the presence/absence of
the motif. The overlap of positive sequences between the orthologous sequences is
used to calculate a hypergeometric P-value2. The conservation score is then
defined as 1 2P, which ranges between 0 and 1 (1 being highly conserved between
the two genomes). In this study, we have used the human and mouse genomes to
calculate the conservation scores associated with each structural motif.
Finding potentially active instances of each motif. As described previously2, we
defined the target genes of a predicted motif as all transcripts whose 39 or 59 UTRs
contain the motif and are associated with a category/bin where the motif is
enriched. In other words, these are the transcripts whose UTRs contain potentially
‘active’ motif occurrences. Upon identifying these likely targets for each structural
motif, a weight-matrix can be generated from these potentially functional
instances as a post-processing step (Supplementary Table 2).
False-discovery rate. In order to assess the false discovery rate, we ran 30 trials with
shuffled 59 and 39 UTR sequences. In all the trials, not a single motif passed all the
statistical tests. Thus, in case of the stability data set, the number of false positives
in each trial, on average, is smaller than 1/30 < 0.34, which corresponds to an FDR
of ,0.01.
Predicting functional interactions. Given two motifs, structural or linear, one can
assess their putative functional interaction through measuring how informative
the presence of one would be about the presence or absence of the other. For
revealing these interactions, we again use mutual information values calculated for
pairwise motif profiles of structural and linear motifs. Randomization-based stat-
istical tests are then used to find the significant interactions. For this, one of the
motif profiles is shuffled 10,000 times and the interaction is deemed significant
only if the real mutual information value is higher than all the 10,000 random ones.
Predicting the target pathways. iPAGE10, with default settings, was used to identify
the likely pathways that are regulated by the discovered structural and linear
motifs.
Availability. TEISER is available online for download at https://tavazoielab.c2b2.
columbia.edu/TEISER.
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Measuring mRNA stability. RNA stability measurements were performed based
on a previously published protocol1. In short, MDA-MB-231 cells at 70% con-
fluency were incubated in the presence of 25mM 4-thiouridine (Sigma) for 4 h.
Then the cells were washed with fresh media (DMEM 1 10% FBS) and incubated
for 0, 1, 2 and 4 h. At each time point, cells were washed with cold PBS and RNA
extraction was performed using a total RNA purification kit (Norgen Biotek). The
4-thiouridine thiol groups were then biotinylated using EZ-Link Biotin-HPDP
(Pierce). We subsequently used mMacs magnetic columns (Miltenyi Biotec) to
capture the labelled RNAs. The resulting samples were then processed for one-
colour hybridization using a one-colour low-input quick-amp labelling kit
(Agilent) and hybridized according to the manufacture’s instructions. A one-
colour RNA spike-in kit (Agilent) was used as endogenous control to normalize
values between arrays. For each transcript, the drop in signal as a function of time
was used as a measure of mRNA stability (Supplementary Fig. 1):

r~{ln
St

S0

� ��
t, where St denotes signal at time t. Linear regression was used

to calculate r for each transcript based on the hybridization signals from the four
time points. It should be noted that TEISER is a non-parametric approach, thus it
is the ranking rather than the actual stability values that underlies our motif
discovery.
Transfection of decoy and scrambled oligonucleotides. We chose real instances
of the sRSM1 structural motifs from NM_014363, which contains four instances of
sRSM1, to create two decoy sets of sequences, each containing two of these
instances (underlined) along with part of the real sequences as context. Set 1:
AAAACTATTTTGAAGATGGTGGTGAGCTGCAAAATAGCTGGATGGATT
TGAATGATTGGGATGATACATCATTGAACTGCACTTTATATAACCAAA
GCTTAGCAGTTTGTTAGATAAGAGTCTATGTATGTCTCTGGTTAGGATG
AAGTTAATTTTATGTTTTTAACATGGTATTTTTGAAGGAGCTAATGAAA
CACTGG. Set2: ATTGTTTCTGGAAACTGCTTGCCAAGACAACATTTATTA
ACTGTTAGAACACTTGCTTTATGTTTGTGTGTACATATTTTCCACAAAT
GTTATAATTTATATAGTGTGGTTGAACAGGATGCAATCTTTTGTTGTCT
AAAGGTGCTGCAGTTAAAAAAAAAACAACCTTTTCTTTCAATATGGCAT
GTAGTGGAGTTTTT. For the scrambled controls, we used the shuffled version of
the putative binding sites (see Supplementary Fig. 5). These two decoy/scrambled
sets were then chemically synthesized (IDT). An upstream T7 promoter was used to
transcribe the constructs in vitro using Megascript T7 kit (Ambion). In order to
reduce cytotoxicity, RNA molecules were capped and poly-A tailed using Cap
Analogue (Ambion) and poly-A polymerase (NEB). MDA-MB-231 cells at 80%
confluency were transfected with the resulting RNA oligos using Lipofectamin 2000
reagent (Invitrogen) according to manufacturer’s recommendations. Experiments
were performed in duplicates for each set. Forty-eight hours post-transfection, we
extracted RNA and differentially labelled the samples with Cy3 or Cy5 dyes. The
samples were then hybridized on Agilent human gene expression arrays (4 3 44k).
The Cy3/Cy5 ratios from the two biological replicates were then averaged into a
single data set as log of ratios, which was then analysed by TEISER.
Reporter system for testing the functionality of sRSM1 instances. The plasmid
pcDNA5/FRT/TOPO (Invitogen) was used to clone a GFP-coding sequence along
with a gateway cloning site downstream of GFP (in its 39 UTR). Decoy and
scrambled sequences (Set 1 in the previous section) were subsequently cloned into
the resulting construct using the gateway site. The resulting plasmids were trans-
fected into the Flp-In 293 cell line (Invitrogen), and the cells were grown in
Hygromycin for selecting stably transfected cells. The resulting cell lines, named
Flp-In 293 GFP-Decoy and Flp-In 293 GFP-Shuffled, were subjected to FACS
measurements to quantify GFP expression. For the decay rate measurements, cells
were incubated in media with 5mg ml21 ofa-amanitine (Sigma). Time points were
taken at 0, 1.5, 3 and 6 h in duplicates for Flp-In 293 GFP-Decoy and Flp-In 293
GFP-Shuffled cells. Quantitative PCR (Fast SYBR Green Master Mix, Ambion)
was then used to determine the relative quantity of GFP transcript in each cell line
at different time-points using 18S rRNA as endogenous control.
Identifying binding candidates of sRSM1. We used a published protocol13 to
isolate potential RNA-binding proteins that bind sRSM1. In short, the StreptoTag
aptamer was added downstream of the Set 1 decoy and scrambled sequences. The
resulting RNAs were then immobilized on a dihydrostreptomycin Sepharose col-
umn (GE Healthcare) and were used to immunoprecipitate potential partners.
Total protein was extracted from MDA-MB-231 cells (Total Protein Extraction
Kit, Millipore), 1,000mg of which was used as input to each column. Samples were
then washed, eluted in 10mM streptomycin and subjected to in-solution diges-
tion24,25. Tryptic peptides were then analysed by nanoliquid chromatography-
tandem mass spectrometry using an Ultimate 3000 nRSLC (Dionex) coupled
online to an LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific), as previ-
ously described24.

HNRPA2B1 knock-down. The ON-Targetplus (Dharmacon) set of siRNAs for
HNRPA2B1 (target sequences: GAGGAGGAUCUGAUGGAUA, GGAGAGUA
GUUGAGCCAAA, and GCUGUUUGUUGGCGGAAUU) were used to trans-
fect MDA-MB-231 cells (grown in D10F medium) using Lipofectamine 2000
(Invitrogen). Three of the four tested siRNAs resulted in a substantial knock-down
in HNRPA2B1 (more than twofold reduction in expression, log ratio .0.4 and
P , 1027) and their corresponding samples were used for hybridization. Forty-
eight hours post-transfection, we extracted total RNA from each sample along
with mock-transfected controls. We then differentially labelled the RNA samples
with Cy3 and Cy5 dyes and hybridized them to Agilent human gene expression
arrays (4 3 44k). The log of signal ratios was used as a measure of differential
expression between the samples and controls. These values were averaged across
the three samples and were subsequently analysed by TEISER to assess the enrich-
ment/depletion pattern of sRSM1 across the distribution.

For the decay rate measurements, forty-eight hours post-transfection, cells were
incubated in media with 5mg ml21 of a-amanitine (Sigma). Time points were
taken at 0, 1, 2 and 4 h in duplicates for the siRNA-transfected samples and
mock-transfected controls. Each sample was then Cy3-labelled and hybridized
to expression arrays (Agilent 4 3 44k) in duplicates and the reported signals were
used to calculate decay rates. Following this procedure, for each transcript, four
decay rates (two biological replicates, each having two technical replicates) were
calculated from the siRNA-transfected samples and four decay rates from the
controls. For each transcript, we then calculated a value according to s(1 2 P),
where P is the t-test P-value between the two sets and s denotes whether the decay
rates are higher in the siRNA samples (11) or the mock controls (21). After this
transformation, the data range is between 21 and 1 with the background genes
(the transcripts that show little change between the two samples) around 0.
TEISER was then used to visualize the enrichment pattern of sRSM1 across this
data range.
Identifying transcripts that interact with HNRPA2B1 (RIP-chip). A myc-
tagged ORF clone of HNRPA2B1 (variant A2, OriGene) was transfected into
MDA-MB-231 cells (grown in D10F medium) using Lipofectamine LTX and
Plus reagent (Invitrogen). Seventy-two hours post-transfection, the cells were
washed with cold PBS and ultraviolet-irradiated at 4,000 mJ cm22. The cells were
then collected and lysed with 1 ml M-PER Reagent (Pierce) and 10ml RNasin
(NEB). The samples were subjected to DNase treatment (baseline ZERO
DNase) for 15 min at 37 uC. Samples were then centrifuged at 16,000g at 4 uC
for 20 min to pellet the cell debris. Immunoprecipitation of tagged HNRPA2B1
protein was performed using Mammalian c-Myc Tag IP/Co-IP Kit (Pierce) per
manufacturer’s instructions. Upon elution, samples were subjected to proteinase K
digestion and polyadenylation. The RNA molecules in each sample were extracted
using RNeasy MinElute Cleanup Kit (Qiagen) and Cy3-labelled using low-input
quick-amp labelling kit (Agilent). As control, we used Cy5-labelled RNA samples
extracted before HNRPA2B1 immunoprecipitation. The samples were hybridized
to Agilent human gene expression arrays (4 3 44k) and the log of signal ratios was
used as a measure of transcript affinity to HNRPA2B1. For each transcript, affinity
values were averaged across two biological replicates and TEISER was used to
assess the enrichment/depletion pattern of sRSM1.
Identifying 39UTR binding sites of HNRPA2B1 (HITS-CLIP). A strategy
similar to that of target transcript identification was used to discover the
HNRPA2B1 binding sites. Upon ultraviolet-irradiation of mycHNRPA2B1-
transfected cells, the samples were subjected to the HITS-CLIP protocol previously
described elsewhere26. ChIPSeeqer21, an integrated ChIP-seq analysis platform,
was used to identify binding sites and extract real and random sequences (default
parameters) for analysis with TEISER.
Measuring growth-rates in HNRPA2B1 knock-down cells. HNRPA2B1
siRNAs (Dharmacon) were used to knock-down the expression of this regulator.
Seventy-two hours post-transfection, four independent samples were harvested
and counted in duplicates as the baseline number of cells at time zero. Similarly,
samples were counted at 25, 49.5, 73.5 and 99.5 h time-points. The same experi-
ment was performed for mock-transfected cells. Using an exponential growth
model, the log-ratio of the counted cells at each time-point was used to estimate
a growth rate for siRNA-transfected and mock-transfected samples. ANCOVA
was used to determine the P-value associated with the observed differences
between the two growth rates.

25. Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample
preparation method for proteome analysis. Nature Methods 6, 359–362 (2009).

26. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes
microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).
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