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Background:  Clinical  implementation  of Next-Generation  Sequencing  (NGS)  is  challenged  by  poor  control
for  stochastic  sampling,  library  preparation  biases  and  qualitative  sequencing  error.  To address  these
challenges  we  developed  and  tested  two  hypotheses.
Methods: Hypothesis  1: Analytical  variation  in  quantification  is predicted  by stochastic  sampling  effects
at  input  of  (a) amplifiable  nucleic  acid  target  molecules  into  the  library  preparation,  (b)  amplicons  from
library  into  sequencer,  or (c) both.  We  derived  equations  using  Monte  Carlo  simulation  to predict  assay
coefficient  of variation  (CV)  based  on  these  three  working  models  and  tested  them  against  NGS  data  from
specimens  with  well  characterized  molecule  inputs  and  sequence  counts  prepared  using  competitive
multiplex-PCR  amplicon-based  NGS  library  preparation  method  comprising  synthetic  internal  standards
(IS).  Hypothesis  2: Frequencies  of technically-derived  qualitative  sequencing  errors  (i.e.,  base  substi-
tution,  insertion  and  deletion)  observed  at each  base  position  in each  target  native  template  (NT)  are
concordant  with  those  observed  in  respective  competitive  synthetic  IS present  in  the same  reaction.  We
measured  error  frequencies  at each  base  position  within  amplicons  from  each  of 30  target  NT,  then  tested
whether  they  correspond  to those  within  the  30 respective  IS.
Results:  For  hypothesis  1, the  Monte  Carlo model  derived  from  both  sampling  events  best  predicted
CV  and  explained  74%  of observed  assay  variance.  For  hypothesis  2, observed  frequency  and  type  of
sequence  variation  at each  base  position  within  each  IS  was  concordant  with  that  observed  in respective
NTs  (R2 =  0.93).

Conclusion:  In  targeted  NGS,  synthetic  competitive  IS  control  for stochastic  sampling  at  input  of  both  target
into library  preparation  and  of target  library  product  into  sequencer,  and  control  for  qualitative  errors
generated  during  library  preparation  and  sequencing.  These  controls  enable  accurate  clinical diagnostic
reporting  of  confidence  limits  and  limit  of  detection  for  copy  number  measurement,  and  of frequency  for
each actionable  mutation.

Published  by Elsevier  GmbH.  This  is an  open  access  article  under  the CC  BY-NC-ND  license  (http://
. Introduction

Quantitative analysis of transcript abundance and/or sequence
ariant frequency are common applications of next generation
equencing (NGS) [1,2]. One important diagnostic NGS application
ncludes accurate identification of clinically actionable sequence
ariation in tumors and the estimation of tumor cell fraction with
he actionable mutation [2,3]. However, lack of appropriate quality

ontrol limits wider clinical diagnostic application of NGS in this
ontext. For example, under-loading of target analyte into library
reparation and/or library product into sequencer will result in
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analytical variation due to stochastic sampling [4]. At the same
time, over-loading of prepared library onto sequencer will result
in re-sampling of library amplicons from the same target analyte
molecule, and without proper controls will give false assurance of
adequate sampling. Moreover, qualitative errors in sequence gen-
erated by polymerase during library preparation and/or sequencing
steps can confound accurate estimation of the true cellular fraction
containing clinically actionable sequence mutations [4,5].

Thus, for diagnostic NGS applications, it is important to control
for several sources of analytical variation, including sample loading
into library preparation, efficiency of target amplification in library

preparation, loading of prepared NGS library onto a sequencing
platform, and the combined polymerase error rates throughout
library preparation and sequencing [6–8]. Currently, the most
prevalent practice is to rely on sequence count data alone to

C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Overview of specimen preparation for Next-Generation Sequencing.
This schematic illustrates our hypothesis that two  primary points of stochastic
sampling error along the continuum of Next-Generation Sequencing (NGS) library
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for each native target, which minimized chance that stochastic
reparation and sequencing can account for observed analytical variation in targeted
CR based NGS assays.

rovide quality control for each potential source of analytical vari-
tion. For example, many recently developed programs seek to
uantify the fractional representation of actionable tumor muta-
ions, and enumeration of sequence read counts are the only
ource of data for assay variance analysis [3–5,9,10]. While these
pproaches address many issues, they provide false assurance
egarding control for stochastic sampling variation due to low
nput of sample into the library preparation, and do not provide
requency limit of detection for each type of base substitution,
nsertion and deletion at each base position, in each target ana-
yte [2,4]. Recent barcoding methods combined with bait-capture
argeted sequencing provide better control for low sample input
hile, again, using only sequence count data to estimate analytical

ariance [1,4,5,11–13]. However, these methods do not provide a
ay to assess limit of detection for observed biological sequence

ariation [12], and the bait-capture method is associated with
00–1000-fold loss in signal [4]. Signal loss is a particular liability
or analysis of small or degraded specimens, such as those routinely
ncountered in the clinical setting [3]. Furthermore, sequencing
ead counts are not always concordant with number of molecules
captured” during library preparation, resulting in false negative
esults [9]. In addition, it is less well recognized that if the number
f target analyte molecules loaded into the library preparation is
ow the analyte may  be poorly quantified due to over-amplification
f a stochastically sampled specimen, regardless of the number of
nalyte amplicons loaded into the sequencer. In order to address
hese challenges, we developed and tested two hypotheses.

ypothesis 1. We  hypothesized that analytical variation in target
nalyte quantification can be predicted by Poisson (i.e. stochastic)
ampling effects at two primary points: (a) input of intact nucleic
cid target molecules loaded into the library preparation reaction,
nd (b) input of derived amplicons from library preparation into the
equencer (i.e. sequence counts) (Fig. 1). Using Monte Carlo simu-
ation we derived equations to predict assay coefficient of variation
CV) based on three working models: number of target molecules
dded to library preparation, number of target amplicons in library
dded to sequencer (i.e., sequence read count), or both (Fig. 1).
e then tested these working models using cell lines with known

llelic composition. Cell lines were mixed and prepared for NGS

uch that a broad range of limiting allelic molar proportions and/or
equence read counts were observed. Each target allele was  mea-
ured relative to a known number of synthetic internal standard
 and Quantification 5 (2015) 30–37 31

molecules using a competitive multiplex-PCR amplicon-based NGS
library preparation method [14].

Hypothesis 2. The accuracy of frequency measurement of
acquired mutations in specimens (e.g., circulating plasma DNA,
tumors, etc.) is confounded by both sampling error (described
above and tested in hypothesis 1), and nucleotide substitution,
insertion and deletion errors encountered during both library
preparation steps and sequencing [3,9]. This latter, technically
derived, sequence variation may  to some extent be systematic for
certain types of sequence variations, but may  also vary largely on
local sequence context. We  hypothesized that technically derived
base substitution, insertion and deletion frequencies observed
at each base position in each target analyte is concordant with
frequencies observed in respective synthetic internal standards
present in the same reaction. In order to characterize the contri-
bution of technically derived nucleotide sequence error rate, we
measured the frequency of base substitution, insertion and dele-
tion errors in a NGS data set derived from 213 normal airway
brushing derived cDNA specimens with both ample intact nucleic
acid loading and sequence counts. Each normal airway brushing
derived cDNA specimen was mixed with a known number of syn-
thetic internal standard (IS) molecules for each target analyte prior
to competitive multiplex PCR amplicon NGS library preparation
to determine if frequency of observed base substitution, insertion
and deletions in each native target was concordant with frequency
observed in each respective synthetic IS. If concordant, synthetic IS
could provide control for both stochastic sampling in quantitative
NGS, as well as control for technically derived sequencing error in
qualitative NGS of low frequency alleles.

2. Methods

2.1. Sample preparation

Hypothesis 1. To test the effect of stochastic sampling on vari-
ance in allelic frequency measurements, genomic DNA (gDNA) was
extracted by FlexiGene DNA kit (Qiagen) and quantified by Nano-
Drop (ThermoScientific, Wilmington, DE) spectrophotometry for
two cell lines (H23 [ATCC CRL-5800] and H520 [ATCC HTB-182]).
The cell lines were previously characterized as homozygous for
opposite alleles at four polymorphic sites (rs769217, rs1042522,
rs735482 and rs2298881) [14]. Cross-mixtures of these two cell-
lines were performed so as to create a well characterized extreme
limiting dilution of each of the four bi-allelic loci (see Mixing design
in Supplementary Table 3). These limiting dilutions of alleles were
then loaded into the library preparation (see Section 2.3), then lim-
iting dilutions of NGS libraries were added to the Illumina HiSeq
2500 flow cell (see Section 2.3).

Hypothesis 2. In order to characterize the base-specific substi-
tution, insertion and deletion rates imparted by combined library
preparation and sequencing error, we used 213 normal human
bronchial epithelial cell (NBEC) cDNA specimens. These specimens
were obtained as part of the ongoing Lung Cancer Risk Test (LCRT)
study at the University of Toledo Medical Center [15]. Approval
for specimen acquisition for this study was obtained by the insti-
tutional review board at the University of Toledo Medical Center.
These samples were chosen based on several key features: (1) they
represent a source of normal nucleic acid templates with presum-
ably low, or absent, acquired somatic mutations. (2) They were
previously confirmed to have high copy numbers of intact template
sampling of templates would confound assessment of combined
library preparation and sequencing error on base-specific substi-
tution, insertion and deletion rates. (3) Competitive synthetic IS
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or targets comprised by the LCRT were cloned into plasmids, and
elected as pure clonal isolates, with Sanger sequencing confirma-
ion of final sequence. This additional purification step was taken
o eliminate any potential errors introduced by synthesis. We  rea-
on that these pure clonal competitive IS will have a frequency
f technically acquired base substitutions, insertions and deletions
hat is similar to the native templates during the combined library
reparation and sequencing steps.

.2. Development of model to predict analytical variation due to
tochastic sampling variation in NGS

ypothesis 1. To test the hypothesis that analytical variation
s dependent on both target analyte native template molecules
dded into library preparation reaction and resultant amplicon
olecules added to sequencer, we developed three working mod-

ls using Monte Carlo simulation and derived equations to predict
xpected assay coefficient of variation (CV) (Fig. 1 and Supplemen-
ary Method—Model generation). These three models and their
quations were based on: target molecules in library added to
equencer (i.e., sequence read counts; Model 1), target native
olecules added to library preparation (Model 2), or both (Model

). This model is based, in part, on a model of biallelic genetic
rift provided by Dr. Stephen P. DiFazio that can easily be simu-

ated in excel <http://www.as.wvu.edu/∼sdifazio/popgen 12/labs/
eneticDriftSim.pdf, last accessed 06.08.15>. We  reasoned that
opulation based founding effects that result in genetic drift of bi-
llelic loci should operate statistically in the same way as stochastic
ampling of a bi-allelic locus present in a test tube in the laboratory
etting, and that the act of pipetting and sampling the specimen
NA is analogous to a founding effect seen in population genetics.
e  further reasoned that there were two primary founding (i.e.,

tochastic sampling) effects present in the lab test tube analogy; (1)
nitial pipetting of the specimen into library preparation reaction,
nd (2) loading of the prepared library onto the sequencer and the
umber of sequencing counts enumerated for each target template
Fig. 1 and Supplementary Method—Model generation). This model
as varied for both the number of input molecules, as well as num-

er of sequence reads derived (Supplementary Method—Model
eneration). This then produced a rich data set, from which three
quations were derived by best curve fit analysis (Supplementary
ethod—Model generation). These derived equations were then

ested against empirically derived data from cross-mixtures of cell
ines to predict observed assay variance in targeted NGS (see Sec-
ion 2.1).

.3. NGS library preparation: targeted competitive multiplex-PCR

.3.1. Cell line cross-mixture specimens
Each of four target analytes was PCR-amplified in samples

erived from the cross-mixture of two cell-lines (see Mixing design
n Supplementary Table 3) that had each been mixed with a known
umber of synthetic competitive internal standard (IS) molecules
s previously described (Supplementary Table 1) [14].

.3.2. NBEC cDNA specimens
Each of 30 target analytes (two target assays for each of 15 genes)

as PCR-amplified in the presence of a known number of respec-

ive synthetic competitive IS molecules as previously described
Supplementary Table 2) [14]. Prepared libraries were then sent
or Illumina HiSeq 2500 sequencing service at the University of

ichigan, Genomics Core facility.
 and Quantification 5 (2015) 30–37

2.3.3. Internal standard mixture preparation
Each competitive IS was  designed to contain six nucleotide dif-

ferences from target analyte native template (NT) that enabled
reliable differentiation between IS between IS and NT during post-
sequencing data analysis (Supplementary Tables 1 and 2) [14]. For
IS used in the analysis of cell line cross-mixture samples, follow-
ing synthesis, each IS was  PCR-amplified with specific primers to
ensure full length product, isolated by gel electrophoresis, quan-
tified using NanoDrop, and mixed with IS for other analytes at
equivalent concentration to prepare an IS mixture [14]. IS used in
analysis of NBEC cDNA samples were prepare by Accugenomics,
Inc. (Wilmington, NC). Briefly, following synthesis IS were cloned in
bacteria and purified to ensure an accurate and uniform population
of sequences for each competitive IS used (see Section 2.1).

2.3.4. NGS data analysis
FASTQ data files from the University of Michigan Genomics core

facility were processed as previously described [14]. FASTQ files
for hypothesis 2 in this study, pertaining to the LCRT reagents,
were additionally processed using Blast 2.2.26+ command line with
a Practical Extraction and Reporting Language (PERL) wrapper to
automate feeding of reference and query sequences to the Blast
command line interface (reference sequences in Supplementary
Table 2). This same PERL script then identified and stored the fre-
quency of each Blast result for each template and for the type of
base substitution, insertion or deletion that was identified across
all reads in a Hash of Hashes of Hashes data table configuration
(sequence error frequencies in Supplementary Tables 4 and 5). PERL
wrapper for Blast 2.2.26+, and the input parameters used for Blast
to enumerate base substitution, insertion and deletion frequencies,
is available upon request.

Because the goal of hypothesis 2 was to identify and character-
ize the base by base frequency of combined sequencing and library
preparation errors, and not biological variation (which was tested
in hypothesis 1), we  surmised that the sequencing data (NT and IS)
could be aggregated into two large sub-pools of subjects (Groups
1 and 2). This is feasible and beneficial for several reasons: (1) a
combined data set of normal specimens with minimal biological
sequence variation (Group 1 [115 NBEC specimen library prepa-
rations] and Group 2 [98 NBEC specimen library preparations],
total 213 NBEC specimen library preparations), should provide ade-
quate sampling of very rare technically derived base substitution,
deletion and insertion events (1 in 1000–100,000) across each spec-
imen pool. (2) If these normal specimens do indeed have minimal
biological variation in sequence, there should be a high degree
of concordance in base substitution, insertion and deletion rates
between the NTs and their respective competitive IS present in
the same specimen (Supplementary Table 2). (3) By splitting the
sequencing data into two pools, we  can, in a surrogate way, assess
the performance of external NT controls versus competitive syn-
thetic IS controls, for accurately measuring technically derived base
substitution, insertion and deletion frequencies.

All final NGS summary counts and absolute quantification of
molecules (where appropriate) are provided in Supplementary
Tables 3–5.

3. Results

3.1. Controlling for stochastic sampling error in NGS

For the equation derived from both sequencing coverage and

input molarity (Model 3; see Supplementary Method—Model
generation), expected coefficient of variation (CV) was  very
close to observed (average [observed CV/expected CV] = 1.01) and
explained 74% of observed assay variance (Fig. 2C). In contrast,

http://www.as.wvu.edu/~sdifazio/popgen_12/labs/GeneticDriftSim.pdf
http://www.as.wvu.edu/~sdifazio/popgen_12/labs/GeneticDriftSim.pdf
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http://www.as.wvu.edu/~sdifazio/popgen_12/labs/GeneticDriftSim.pdf
http://www.as.wvu.edu/~sdifazio/popgen_12/labs/GeneticDriftSim.pdf
http://www.as.wvu.edu/~sdifazio/popgen_12/labs/GeneticDriftSim.pdf
http://www.as.wvu.edu/~sdifazio/popgen_12/labs/GeneticDriftSim.pdf
http://www.as.wvu.edu/~sdifazio/popgen_12/labs/GeneticDriftSim.pdf
http://www.as.wvu.edu/~sdifazio/popgen_12/labs/GeneticDriftSim.pdf
http://www.as.wvu.edu/~sdifazio/popgen_12/labs/GeneticDriftSim.pdf
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Fig. 2. Performance of Monte Carlo simulation models to predict observed assay variance.
Equations used to plot expected coefficient of variance (CV) are presented in Supplementary Methods—Model design. Measured CV was obtained by 46-quadruplicate
technical measurements; 46 measurements of CV and calculated CV based on Models 1, 2 and 3 are available in Supplementary Table 3.

Fig. 3. Independent effects of sequence counts and sample molecule loading on measured allelic ratios.
(A–D)  Effect of low molecule input into library preparation on measured allelic-ratio relative to expected. To eliminate effect of low sequence counts, only values based
on  at least 500 sequence counts were included. Closed circles = high molecule input (median = 3313 molecules each replicate; Supplementary Table 3, rows 33–58). Open
triangles = low molecule input (median = 15 molecules each replicate; Supplementary Table 3, rows 60–85). Each data point is a single technical replicate. (E) Serially diluted
PCR  amplicon library samples from the undiluted 1:1 cell line mixture were loaded into sequencer. Effect of sequences counted (X-axis) on allelic-ratio (Y-axis) for each
target  with high molecule input (>500 molecules in each replicate). Combined results from all four loci are presented (Supplementary Table 3, rows 88–112). (F) Undiluted
PCR  amplicon library samples from serially diluted 1:1 cell line mixture were loaded into sequencer. Effect of target molecule number (X-axis) on allelic-ratio (Y-axis)
for  each target with high sequence count (>500 sequence read counts in each replicate) for each target (Supplementary Table 3, rows 115–139). Dashed line with open
squares  represents an expected frequency of error based on a Poisson distribution (Model 1 and 2). Mixing design of cell line DNA and titration of sequencing counts, and all
measurements derived from these specimens are available as full and individual subset analysis tables in Supplementary Table 3.
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Fig. 4. Frequency plot of observed technically derived sequencing variation.
(A,B) Type of base substitution is plotted on X-axis. For example, “C > T” represents a transition from a cytosine to thymine base, and “G > –” represents a deletion of a guanine.
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he  first base listed is the expected consensus base at that position based on seque
he  frequency of that type of sequence variation is plotted as an individual data po
eviation error bars are plotted for each type of sequence variation. Group 2 data p

bserved CV was on average 13-fold, or 1.5-fold, higher than
xpected CV based on sequencing coverage (Model 1), or input
olarity (Model 2), prediction models alone (Fig. 2A and B). For

ach assay, when input of target allele copies into library prepa-
ation was low (median of 15 molecules; open triangles) assay
ariance for measured allelic ratio was much higher, compared to
igh molecule input (median of 3313 molecules; closed circles)
Fig. 3A–D). Although there was an approximately 200-fold dif-
erence in median molecules loaded into library preparation for
ow and high loading conditions, sequence counts were high for
oth conditions (see Mixing design and raw data in Supplementary
able 3). When only specimens with high molecule input (>500
olecules) were assessed, variance in measured allelic ratio fol-

owed a Poisson distribution (plotted boxes and dashed line) for
arget sequence counts (Fig. 3E). Similarly, when only specimens
ith high sequence counts (>500 sequence counts) were assessed,

ariance in measured allelic ratio followed a Poisson distribution
or target molecule input (Fig. 3F). All data presented in this section
re available in Supplementary Table 3.

.2. Controlling for qualitative sequencing error in NGS

Varying frequency of base substitutions were observed for all
ucleotides, and rare frequency deletion events were detected

or guanine and adenine bases (Fig. 4). In general, most observed
ase substitution rates were lower than 1 in 100 for each base

ocation. Adenine to guanine and cytosine to thymine base tran-
itions (purine–purine or pyrimidine–pyrimidine) were the most
ommon type of sequence variation observed, followed by base
ranversions (purine–pyrimidine or pyrimidine–purine) by a fac-
or of approximately 10-fold lower frequency (Fig. 4). Furthermore,
he type of sequence base substitution and its average frequency
as concordant between NT and IS for Group 1 (Fig. 4). The coef-
cient of variation (CV) around the mean frequency of each type
f base substitution was on average 0.28. This roughly translates
o a standard deviation of 1.9-fold on either side of the population
easurement mean for each type of sequence variation (2.8-fold
etection limit with 95% confidence limits for detection of fold
hange). Data for Group 2 are available in Supplementary Table
, and are nearly identical to those presented in Fig. 4. Bivariate
listed in Supplementary Tables 1 and 2. Each base position, for each template, and
ng the Y-axis. In this figure, only Group 1 data are presented. Means and standard

 essentially identically, and was moved as raw data to Supplementary Table 5.

plots of the frequency of technically derived sequence variation
for NT and corresponding type of sequence variation for each base
position in competitive IS for Groups 1 and 2 (see Section 2.3.4)
are presented in Fig. 5A,C,E and G. Frequency of observed sequence
variation in IS explained 93–94% of observed sequence variation in
NT (Fig. 5A and C). Importantly, the vast majority of deviation from
the regression line is explainable by the minimum sequence counts
observed for the technically derived sequence variation (Fig. 5B
and D). Concordance was slightly higher between NT and NT, or
IS and IS comparisons between groups 1 and 2 respectively, with
each explaining 96–97% of the frequency of base-specific sequence
variation observed between the two  groups (Fig. 5E and G). Again,
deviation from the regression line in Fig. 5E and G was largely
explainable by the minimum sequence counts observed for the rare
technically derived sequence variation (Fig. 5F and H).

4. Discussion

Next-Generation Sequencing (NGS) technologies have the
potential to disrupt a large number of technologies presently used
in clinical diagnostics. However, NGS implementation in the clin-
ical setting is impeded by a complex specimen and data analysis
process (Fig. 1), and this is compounded by an equally complex
goal of analyzing large multi-target panels. Because of the profound
clinical implications on treatment decision management based on
NGS methods, they should be held to the same analytical perfor-
mance standards applied to other methods used in the clinical
chemistry laboratory. In an effort to achieve this goal we developed
a competitive multiplex PCR-based amplicon library preparation
method that utilizes competitive IS (also known as internal ampli-
fication controls) [14]. The method enables control for sample
overloading, excessive amplification cycles, other signal saturation
effects and technical biases that can lead to inter-assay and inter-
specimen variation in signal measurement. Data also suggested
that this method controls for sub-optimal loading of sample into
library preparation, suboptimal loading of library preparation into

sequencer, and sequencer errors generated during library prepa-
ration and sequencing. We  decided to address these important
challenges by formulating and experimentally testing Hypotheses
1 and 2.
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Fig. 5. Performance of competitive internal standards to measure frequency of technically derived sequence variation.
(A,C,E  and G) Bivariate plots of measured sequence variation frequency, for each base position along the length of each native template (NT) and internal standard (IS) for
Groups 1 and 2 (see Section 2: NGS data analysis). (B,D,F and H) Plots representing fold-deviation of NT:IS ratio away from regression line in respective plots A,C,E and G.
Sequence counts observed (minimum) on the X-axis is the number of sequence counts for the observed type of sequencing error, and not the total number of sequence counts
for  that assay. Dashed line with open squares represents an expected frequency of error based on a Poisson distribution (Model 1).
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Hypothesis 1 is supported by the data reported here. Specifi-
ally, the mathematical equation based on both NT loading into
GS library preparation and sequence read counts from NGS instru-
ent (Monte Carlo simulation Model 3) predicted observed assay

oefficient of variation in four targeted NGS assays (Figs. 2 and 3
nd Supplementary Methods—Model design). While it remains to
onfirm the predictive value of this equation across other types of
GS library preparation methods and sequencing platforms, gener-
lizability is likely based on the similarity of biochemical reactions
nvolved.

Implementation of the Model 3 equation in the clinical setting
ay  be particularly helpful when only one technical or biological

eplicate measurement is feasible. This is common in the clinical
etting due to the limited size of biopsy, blood, plasma, and other
pecimens. In this context, the laboratory clinician will be asked to
omment on the confidence in the measurement of target analyte,
r frequency of a clinically actionable mutation present in a tumor
pecimen. Using this equation, the laboratory information system
ill be able to easily derive confidence intervals for reporting. As

n example, this would simplify a decision regarding whether to
irect treatment to an actionable mutation. Importantly, as is clear
rom Fig. 3F, large analytical variation from stochastic sampling will
e observed if an insufficient concentration of target molecules is
ampled, regardless of the concentration of amplification products
ampled for loading into sequencer. This is why it is important to
se quality control thresholds that address each of these sources of
ariation.

We now routinely implement the Model 3 equation in our NGS
ipeline to determine the confidence limits for each value. By this
pproach, each value is associated with a confidence limit based on
oading of sample into the library preparation and library prepara-
ion into sequencer. This is particularly important for transcriptome
nalysis, or assessment for tumor fraction containing actionable
utation because in each sequencing run, the representation of

 particular transcript or actionable mutation among hundreds of
amples included in the library may  range over six log10. As such,
t is not possible to ensure that sampling of each target transcript
r actionable mutation and respective library product minimizes
tochastic variation.

Hypothesis 2 also is supported by data from these studies.
pecifically, the frequency of technically derived sequence vari-
tion for each NT was largely explained by that observed in the
espective IS template (Fig. 5A and C). Furthermore, any devia-
ion from the regression line observed (in Fig. 5A and C), was
argely explained by stochastic sampling of low sequence counts
or the technically derived sequence variation (Fig. 5B and D). Thus,
ith sufficient molecules loaded into the library preparation, and

equence counts obtained, the limit of detection of rare biological
ingle nucleotide variations in native material can be easily deter-
ined using a competitive internal standard (Fig. 5), and is more

ccurate than the 2.8-fold change limit of detection estimated by
he type of sequence variation only (Fig. 4). Importantly, base tran-
itions were observed in approximately 10-fold excess compared
o base transversion events (Fig. 4). The error rates observed here
re specific to the chosen combination of specimen preparation,
equencing and data analysis pipeline methods, and should not be
lindly applied to other NGS pipelines.

In summary, we present data that synthetic IS, in the context of
 targeted competitive PCR amplicon library preparation method
14], control for both stochastic sampling in quantitative NGS and
echnically derived sequencing error in qualitative NGS detection
f low frequency alleles. By applying quality-control parameters

ased on these experimentally validated models that predict key
ources of NGS analytical variation, we can now accurately report
onfidence limits for NGS measurement of clinically important
nalytical targets, as well as provide an accurate limit of detec-

[
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tion for observed base substitution, insertion and deletion rates at
each base position within each native target. We  are implementing
quality control measures described here in analysis of promising
diagnostic tests, including a lung cancer diagnostic test [16] and a
lung cancer risk test [14]. Incorporation of these quality controls
provides an analysis pathway consistent with previously reported
College of American Pathologists (CAP) and Nex-StoCT guidelines
for NGS diagnostics in the clinical setting [6–8].
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