Kinetic Outlier Detection (KOD) in real-time PCR

zachi Bar1, Anders Muszta2 , Jose Manuel Andrade-Garda3 and Mikael Kubista1,4
Department of Chemistry and Bioscience Chalmers University of Technology Medicinargatan 7B 405 30, Gothenburg SWEDEN
群 Department of Analytical Chemistry, University of A Coruna, A Zapateira s/n E-15071 A Coruna, Spain zachi.bar@molbiotech.chalmers.se
1 Introduction
he exponential nature of PCR makes it sensitive to differences in the efficiency of the compared reactions. Kinetic Outlier Detection (KOD) is a statistical method to identify test samples with high probability for dissimilar efficiency. Table 1 summarizes the requirements for similarity in absolute and relative quantification.

	Absolute	Relative
Characteristics	Each test sample stands alone (e.g., quantification of firal load) and quantified relatively to the standard curve samples.	Test samples are quantified one relatively to to other (e.g., comparison of gene expression analysis after treatment).
The efficiency of a test sample should be similar to the mean efficiency of the	Standard curve samples	Other test samples
Also refered to as Training set		

Materials, methods and experimental design as in the poster "Using the variance of

 efficiency
2

Mathematical mode

$\mathrm{E}_{\text {test }} \rightarrow$ Efficiency of a test sample
$\bar{E}_{\text {ruain }} \rightarrow$ Estimated mean efficiency of a training set
$\mathrm{S}^{2} \rightarrow$ Estimated variance of efficiency of high quality samples
$\sigma^{2} \rightarrow$ Nominal value for variance from previous study
$c_{p}=\left|\bar{E}_{\text {train }}-E_{\text {test }}\right| \rightarrow$ Critical value for decision on outlier with probability p $\Phi \rightarrow$ Cumulative normal distribution function
$t \rightarrow$ Cumulative t -distribution function
$p=P\left(E_{\text {rain }}-E_{\text {tess }} \mid>c_{p}\right)$ for some small $\mathrm{p}, \mathrm{E}_{\text {test }}$ is considered an outlier

$$
\begin{aligned}
& c_{p}=\sqrt{\sigma^{2}\left(1+\frac{1}{n}\right)} * \Phi^{-1}\left(1-\frac{p}{2}\right) \quad[1] \quad \sigma^{2} \text { is known (Nominal KOD) } \\
& c_{p}=\sqrt{S^{2}\left(1+\frac{1}{n}\right)} * t_{n-1}^{-1}\left(1-\frac{p}{2}\right) \quad[2] \quad \text { If } \sigma^{2} \text { is unknown (Comparative KOD) }
\end{aligned}
$$

Equation [3] is the confidence interval for the error in quantificatio
ssociated with dissimilar efficiencies. Here N_{0}^{1} and N^{2} are the initial copy umber if calculated by the test sample efficiency and the mean efficiency of he training set, respectively.

$$
1-p=P\left(\left(1-\frac{c_{p}}{1+\bar{E}_{\text {train }}+c_{p}}\right)^{C T} \leq \frac{N_{0}^{1}}{N_{0}^{2}} \leq\left(1+\frac{c_{p}}{1+\bar{E}_{\text {train }}-c_{p}}\right)^{C T}\right)
$$

 KOD in absolute quantification. Equal initia numbers of DNA molecules were amplified wihn dif effiencies. The red line same number of molecules and efficiency equal to the critical value. Samples to the right of the red line are outliers.

4

utiler samples (arrows) detected by Comparative KOD (left) and Nominal KOD right) in high (x) or low (\cdot) quality replicate sets on $\mathrm{CV}-\operatorname{Var}(\mathrm{Eff})$ plot (CV = $100 *$ SD/Average, see poster P50 for details). The proportion of outliers in the low quality sets was significantly higher ($p<0.01$) comparing to high quality sets 36% vs

5

Minimal difference in efficiencies, $E_{\text {train }}-E_{\text {test }}$ KOD detects. Calculated by Equation [1], with $\mathrm{p}=0.05$.

The distance between the blue and red sheets is the confidence interval for the error in quantification associated with dissimilar efficiencies $\mathrm{n}=30$)

6

Conclusion

KOD can be used to draw attention of real-time PCR user to suspected samples.

